Stochastic Estimation of Seroprevalence Against Ornithobacterium rhinotracheale and Avian Pneumovirus among Chickens in Argentina


Authors

  • J. Uriarte Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Argentina
  • K. Suzuki Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Argentina
  • J. Origlia Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Argentina
  • D. Gornatti Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Argentina
  • M. Piscopo Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Argentina
  • R. Cerda Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Argentina
  • M. Herrero
  • H. Marcantoni Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Argentina
  • M.F. Unzaga Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Argentina
  • E. Spinsantti Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Argentina
  • F. Marino Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Argentina
  • M. Pecoraro Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Argentina
  • S. Corva Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Argentina
  • M. Petruccelli Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Argentina

DOI:

https://doi.org/10.3923/ijps.2010.352.356

Keywords:

Bayesian inference, respiratory diseases, rogan-Gladen estimator

Abstract

The objective of this study was to estimate the true prevalence of seropositive individual chicken against Ornithobacterium rhinotracheale and avian pneumovirus in Argentina, using the Rogan-Gladen estimator in combination with Bayesian inference. Chicken runs existed in 21 and 20 different towns in Buenos Aires and Entre Ríos Provinces in Argentina for Ornithobacterium rhinotracheale and avian pneumovirus seroprevalence, respectively, were studied. Individual-chicken sera were analyzed using a commercial enzyme-linked immunosorbent assay. The 719 (for testing Ornithobacterium rhinotracheale) and 933 (for testing avian pneumovirus) chickens were investigated. The overall true seroprevalence was 62.6% [95% Bayesian Credible Interval (BCI): 37.6-84.5%] and 8.0% (95% BCI: 1.4-18.5%) against Ornithobacterium rhinotracheale and avian pneumovirus, respectively.

References

Arns, C.W., H.M. Hafez, T. Yano, M.C.G.B. Monteiro, M.C. Alves, H.G. Domingues and L.T. Coswig, 1998. Ornithobacterium rhinotracheale: Deteccao sorologica em aves matrizes e frangos de corte. Proceedings of Conferencia Apinco, (CA'98), Sao Paulo, Brazil, pp: 55-55.

Bisgaard, M., A.M. Bojesen, J.P. Christensen, P. Mark, F.M. Paul, M.B. Janet and J.A. Dennis, 2008. Infections Caused by Species of Pasteurellaceae, Ornithobacterium and Riemerella: An Introduction. 6th Edn., W.B. Saunders, Edinburgh, pp: 146-148.

Branscum, A.J., I.A. Gardner and W.O. Johnson, 2004. Bayesian modeling of animal- and herd-level prevalences. Prev. Vet. Med., 66: 101-112.

Cook, J.K.A., 2000. Avian pneumovirus infections of turkeys and chickens. Vet. J., 160: 118-125.

Dohoo, I., W. Martin and H. Stryhn, 2003. Veterinary Epidemiologic Research. AVC Inc., Charlottetown, pp: 706.

Dohoo, I., H. Stryhn and J. Sanchez, 2007. Evaluation of underlying risk as a source of heterogeneity in meta-analyses: A simulation study of Bayesian and frequentist implementations of three models. Prev. Vet. Med., 81: 38-55.

FAO, 2009. FAOSTAT: FAO Statistical Database. FAO, Rome, Italy.

Gough, R.E., 2005. Poultry: Avian Pneumovirus. In: The Merck Veterinary Manual, Kahn, C.M. (Ed.). 9th Edn., Merck and Co., Whitehouse Station, pp: 2299-2300.

Hintze, J., 2008. PASS 2008 Software. NCSS, Kaysville, UT, USA.

IDEXX, 2002. IDEXX ORT test kit detects all serotypes in chicken and Turkey serum. http://www.idexx.com/pubwebresources/pdf/en_us/ livestock-poultry/0962896.pdf.

IDEXX, 2004. Effective tool for monitoring avian pneumovirus in chicken and Turkey flocks. http://www.idexx.com/pubwebresources/pdf/ en_us/livestock-poultry/6478800m.pdf.

Lunn, D.J., A. Thomas, N. Best and D. Spiegelhalter, 2000. WinBUGS a Bayesian modelling framework: Concepts, structure and extensibility. Stat. Comput., 10: 325-337.

Martin, S.W., A.H. Meek and P. Willeberg, 1987. Veterinary Epidemiology. Iowa State University Press, Ames, pp: 343.

Papaspiliopoulos, O. and G. Roberts, 2008. Stability of the Gibbs sampler for Bayesian hierarchical models. Ann. Stat., 36: 95-117.

Peres, M.F., A.S. Carrijo, J.A. Higa and J.M. de Oliveira, 2006. Serological evidence of avian pneumovirus infections in broiler flocks in counties of Mato Grosso do Sul. Pesqui. Vet. Brasil., 26: 254-258.

Rogan, W.J. and B. Gladen, 1978. Estimating prevalence from results of a screening-test. Am. J. Epidemiol., 107: 71-76.

Sanchez, J., I. Dohoo, J. Carrier and L. Des Coteaux, 2004. A meta-analysis of the milk-production response after anthelmintic treatment in naturally infected adult dairy cows. Prev. Vet. Med., 63: 237-256.

Thrusfield, M., 2005. Veterinary Epidemiology. 3rd Edn., Blackwell Publishing, Incorporated, Ames, Iowa.

Van Empel, P., P. Mark, F.M. Paul, M.B. Janet and J.A. Dennis, 2008. Ornithobacterium rhinotracheale: Poultry Diseases. 6th Edn., W.B. Saunders, Edinburgh, pp: 164-171.

Vose, D., 2008. Risk Analysis: A Quantitative Guide. 3rd Edn., Wiley, Chichester, UK. Pages: 752.

Baadsgaard, N.P. and E. Jogensen, 2003. A bayesian approach to the accuracy of clinical observations. Prev. Vet. Med., 59: 189-206.

Downloads

Published

2010-03-15

Issue

Section

Research Article

How to Cite

Uriarte, J., Suzuki, K., Origlia, J., Gornatti, D., Piscopo, M., Cerda, R., Herrero, M., Marcantoni, H., Unzaga, M., Spinsantti, E., Marino, F., Pecoraro, M., Corva, S., & Petruccelli, M. (2010). Stochastic Estimation of Seroprevalence Against Ornithobacterium rhinotracheale and Avian Pneumovirus among Chickens in Argentina. International Journal of Poultry Science, 9(4), 352–356. https://doi.org/10.3923/ijps.2010.352.356

Most read articles by the same author(s)

1 2 > >>