Proteomic Evaluation of Avian Peripheral Blood Monocytes for Functional ProteinsBroiler


Authors

  • L.L. Hale-McWilliams Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
  • A. M. Cooksey Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
  • J.P. Thaxton Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
  • L.M. Pinchuk Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
  • G.T. Pharr Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA

DOI:

https://doi.org/10.3923/ijps.2010.1015.1022

Keywords:

Broiler, functional proteins, monocyte

Abstract

Monocytes as well as other professional Antigen Presenting Cells (APC), Dendritic Cells (DC) and macrophages, play a critical role in adaptive and innate immune responses. A Differential Detergent Fractionation (DDF) analysis was conducted on avian monocytes to reveal proteins related to cell adhesion, uptake and antigen presentation to lymphocytes, receptor proteins, proteases and cytokines. We identified a total of 3,229 proteins with 46 of these involved in the functions of professional APC. Of these proteins, fourteen were receptor proteins, four were related to antigen presentation (including MHC Class I), six to antigen uptake, ten to cell adhesion, two Toll-like receptors (TLR 4 and 15) and nine protease proteins were identified. This research demonstrates that the DDF approach provides meaningful, interpretable, functional, information concerning protein expression profiles associated with monocyte activation and differentiation into macrophages and/or immature DC in avian species. This data will be instrumental in future experiments evaluating protein expression of monocytes in stressed broilers.

References

Afanassieff, M., R.M. Goto, J. Ha, M.A. Sherman and L. Zhong et al., 2001. At least one class I gene in restriction fragment pattern-Y (Rfp-Y), the second MHC gene cluster in the chicken, is transcribed, polymorphic and shows divergent specialization in antigen binding region. J. Immunol., 166: 3324-3333.

Akira, S. and K. Takeda, 2004. Toll-like receptor signaling. Nat. Rev. Immunol., 4: 499-511.

Banchereau, J., F. Bazan, D. Blanchard, F. Brie and J.P. Galizzi et al., 1994. The CD40 antigen and its ligand. Ann. Rev. Immunol., 12: 881-926.

Bhathena, S.J., J. Louie, G.P. Schechter, R.S. Redman, L. Wahl and L. Recant, 1981. Identification of human mononuclear leukocytes bearing receptors for somatostatin and glucagon. Diabetes, 30: 127-131.

Bottcher, A., U.S. Gaipl, B.G. Furnrohr, M. Herrmann, I. Girkontaite, J.R. Kalden and R.E. Voll, 2006. Involvement of phosphatidylserine, αvβ3, CD14, CD36 and complement C1q in the phagocytosis of primary necrotic lymphocytes by macrophages. Arthritis Rheum., 54: 927-938.

Bridgham, J.T. and A.L. Johnson, 2003. Characterization of chicken TNFR superfamily decoy receptors, DcR3 and osteoprotegerin. Biochem. Biophys. Res. Commun., 307: 956-961.

Briles, W.E., R.M. Goto, C. Auffray and M.M. Miller, 1993. A polymorphic system related to but genetically independent of the chicken major histocompatiblity complex. Immunogenetics, 37: 408-414.

Bowen, O.T., R.F. Wideman, N.B. Anthony and G.F. Erf, 2006. Variation in the pulmonary hypertensive responsiveness of broilers to lipopolysaccharide and innate variation in nitric oxide production by mononuclear cells. Poult. Sci., 85: 1349-1363.

Denbow, D.M., S. Meade, A. Robertson, J.P. McMurtry, M. Richards and C. Ashwell, 2000. Leptin-induced decrease in food intake in chickens. Physiol. Behav., 69: 359-362.

Dalm, V., P.M. Van Hagen, P.M. Van Koetsveld, S. Achilefu and A.B. Houtsmuller et al., 2003. Expression of somatostatin, cortistatin and somatostatin receptors in human monocytes, macrophages and dendritic cells. Am. J. Physiol. Endocrin. Metab., 48: E344-E353.

De Villiers, W.J.S. and E.J. Smart, 1999. Macrophage scavenger receptors and foam cell formation. J. Leukoc. Biol., 66: 740-746.

Fulton, J.E., E.L. Thacker, L.D. Bacon and H.D. Hunt, 1995. Functional analysis of avian class I (BFIV) glycoproteins by epitope tagging and mutagenesis in vitro. Eur. J. Immunol., 25: 2069-2076.

Geris, K.L., G. Meeussen, E.R. Kuhn and V.M. Darras, 2000. Distribution of somatostatin in the brain and of somatostatin and thyrotropin-releasing hormone in peripheral tissues of the chicken. Brain Res., 873: 306-309.

Golemboski, K.A., R.L. Taylor, W.E. Briles, R.W. Briles and R.R. Dietert, 1995. Inflammatory function of macrophages from chickens with B-recombinant haplotypes. Avian Pathol., 24: 347-352.

He, H., K.J. Genovese, D.J. Nisbet and M.H. Kogut, 2006. Profile of toll-like receptor expressions and induction of nitric oxide synthesis by toll-like receptor agonists in chicken monocytes. Mol. Immunol., 43: 783-789.

Higgs, R., P. Cormican, S. Cahalane, B. Allan and A.T. Lloyd et al., 2006. Induction of a novel chicken toll-like receptor following Salmonella enterica serovar typhimurium infection. Infect. Immun., 74: 1692-1698.

Humphreys, J.D., A. Byron and M.J. Humphries, 2006. Integrin ligands at a glance. J. Cell Sci., 119: 3901-3903.

Hunt, H.D. and J.E. Fulton, 1998. Analysis of polymorphisms in the major expressed class I locus (B-FIV) of the chicken. Immunogenetics, 47: 456-467.

Hunt, H.D., R.M. Goto, D.N. Foster, L.D. Bacon and M.M. Miller, 2006. At least one YMHCI molecule in the chicken is alloimmunogenic and dynamically expressed on spleen cells during development. Immunogenetics, 58: 297-307.

Joyce, D.A., J.H. Steer and L.J. Abraham, 1997. Glucocorticoid modulation of human monocyte/macrophage function: Control of TNF-alpha secretion. Inflammation Res., 46: 447-451.

Kaufman, J., J. Salomonsen, K. Skjodt and D. Thorpe, 1990. Size polymorphism of chicken major histocompatibility complex-encoded B-G molecules is due to length variation in the cytoplasmic heptad repeat region. Proc. Natl. Acad. Sci. USA., 87: 8277-8281.

Kogut, M.H., M. Iqbal, H. He, V. Philbin, P. Kaiser and A. Smith, 2005. Expression and function of toll-like receptors in chicken heterophils. Dev. Comp. Immunol., 29: 791-807.

Kruger, E.F., B.L. Boyd and L.M. Pinchuk, 2003. Bovine monocytes induce immunoglobulin production in peripheral blood B lymphocytes. Dev. Comp. Immunol., 27: 889-897.

Kothlow, S., I. Morgenroth, C.A. Tregaskes, B. Kaspers and J.R. Young, 2008. CD40 ligand supports the long-term maintenance and differentiation of chicken B cells in culture. Dev. Comp. Immunol., 32: 1015-1026.

Laflamme, N. and S. Rivest, 2001. Toll-like receptor 4: The missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J., 15: 155-163.

Landmann, R.M., F.B. Muller, C. Perini, M. Wesp, P. Erne and F.R. Buhler, 1984. Changes of immunoregulatory cells induced by psychological and physical stress: Relationship to plasma catecholamines. Clin. Exp. Immunol., 58: 127-135.

Langdon, C., C. Kerr, M. Hassen, T. Hara, A.L. Arsenault and C.D. Richards, 2000. Murine oncostatin M stimulates mouse synovial fibroblasts in vitro and induces inflammation and destruction in mouse joints in vivo. Am. J. Pathol., 157: 1187-1196.

Lee, S.R., G.T. Pharr, A.M. Cooksey, F.M. McCarthy, B.L. Boyd and L.M. Pinchuk, 2006. Differential detergent fractionation for non electrophoretic bovine peripheral blood monocytes proteomics reveals proteins involved in professional antigen presentation. Dev. Comp. Immunol 30: 1070-1083.

Lee, S.R., G.T. Pharr, B.L. Boyd and L.M. Pinchuk, 2008. Bovine viral diarrhea viruses modulate toll-like receptors, cytokines and co-stimulatory molecules genes expression in bovine peripheral blood monocytes. Comp. Immunol. Microbiol. Infect. Dis., 31: 403-418.

McGreal, E.P., J.L. Miller and S. Gordon, 2005. Ligand recognition by antigen-presenting cell C-type lectin receptors. Curr. Opin. Immunol., 17: 18-24.

Miller, M.M., R. Goto, S. Young, J. Chirivella, D. Hawke and C.G. Miyada, 1991. Immunoglobulin variable-region-like domains of diverse sequence within the major histocompatibility complex of the chicken. Proc. Natl. Acad. Sci. USA., 88: 4377-4381.

Morimura, T., S. Miyatani, D. Kitamura and R. Goitsuka, 2001. Notch signaling suppresses IgH gene expression in chicken B cells: Implication in spatially restricted expression of serrate2/notch1 in the bursa of fabricius. J. Immunol., 166: 3277-3283.

Mosheimer, B.A., N.C. Kaneider, C. Feistritzer, A.M. Djanani, D.H. Sturn, J.R. Patsch and C.J. Wiedermann, 2005. Syndecan-1 is involved in osteoprotegerin-induced chemotaxis in human peripheral blood monocytes. J. Clin. Endocrin. Metab., 90: 2964-2971.

Nagalakshmi, M.L., E. Murphy, T. McClanahan and R.D.W. Malefyt, 2004. Expression patterns of IL-10 ligand and receptor gene families provide leads for biological characterization. Int. Immunopharmacol., 4: 577-592.

Niv-Spector, L., N. Raver, M. Friedman-Einat, J. Grosclaude, E.E. Gussakovsky, O. Livnah and A. Gertler, 2005. Mapping leptin-interacting sites in recombinant Leptin-Binding Domain (LBD) subcloned from chicken leptin receptor. Biochem. J., 390: 475-484.

Oda, K. and H. Kitano, 2006. A comprehensive map of the toll-like receptor signaling network. Mol. Syst. Biol., 2: 2006-2015.

Ohishi, K., B. Varnum-Finney, R.E. Serda, C. Anasetti and I.D. Bernstein, 2001. The Notch ligand, Δ-1, inhibits the differentiation of monocytes into macrophages but permits their differentiation into dendritic cells. Blood, 98: 1402-1407.

Park, D.R., A.R. Thomsen, C.W. Frevert, U. Pham, S.J. Skerrett, P.A. Kiener and W.C. Liles, 2003. Fas (CD95) induces proinflammatory cytokine responses by human monocytes and monocyte-derived macrophages. J. Immunol., 170: 6209-6216.

Pinchuk, L.M., G.V. Pinchuk, G.T. Pharr and S.R. Lee, 2007. Toll Bridge between the Outside World and Self: A Road to Safety or a Pass to Artherosclerosis. In: Pattern Recognition in Biology. Corrigan, M.S. (Ed.), Nova Science Publishers, Inc., USA., pp: 225-244.

Pink, J.R.L., W. Droege, K. Hala, V.C. Miggiano and A. Ziegler, 1977. A three-locus model for the chicken major histocompatibility complex. Immunogenetics, 5: 203-216.

Poltorak, A., X. He, I. Smirnova, M.Y. Liu and C. van Huffel et al., 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science, 282: 2085-2088.

Puzzi, J.V., L.D. Bacon and R.R. Dietert, 1990. B-congenic chickens differ in macrophage inflammatory responses. Vet. Immunol. Immunopathol., 26: 13-30.

Qureshi, M.A., 2003. Avian macrophage and immune response: An overview. Poult. Sci., 82: 691-698.

Qureshi, M.A., R.R. Dietert and L.D. Bacon, 1988. Chemotactic activity of chicken blood mononuclear leukocytes from 15I5-B-congenic lines to bacterially derived chemoattractants. Vet. Immunol. Immunopathol., 19: 351-360.

Saleem, A., S. Kharbanda, Z. Yuan and D. Kufe, 1995. Monocyte colony-stimulating factor stimulates binding of phosphatidylinositol 3-kinase to Grb2-Sos complexes in human monocytes. J. Biol. Chem., 270: 10380-10383.

Sanchez-Pozo, C., J. Rodriguez-Bano, A. Dominguez-Castellano, M.A. Muniain, R. Goberna and V. Sanchez-Margalet, 2003. Leptin stimulates the oxidative burst in control monocytes but attenuates the oxidative burst in monocytes from HIV-infected patients. Clin. Exp. Immunol., 134: 464-469.

Seshasayee, D., H. Wang, W.P. Lee, P. Gribling and J. Ross et al., 2004. A novel in vivo role for osteoprotegerin ligand in activation of monocyte effector function and inflammatory response. J. Biol. Chem., 279: 30202-30209.

Seta, N. and M. Kuwana, 2007. Human circulating monocytes as multipotential progenitors. The Keio J. Med., 56: 41-47.

Stefanidakis, M. and E. Koivunen, 2006. Cell-surface association between matrix metalloproteinases and integrins: Role of the complexes in leukocyte migration and cancer progression. Blood, 108: 1441-1450.

Sudhakaran, P.R., A. Radhika and S.S. Jacob, 2007. Monocyte macrophage differentiation in vitro: Fibronectin-dependent upregulation of certain macrophage-specific activities. Glycoconj. J., 24: 49-55.

Thompson, J.D., D.G. Higgins and T.J. Gibson, 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22: 4673-4680.

Thoraval, P., M. Afanassieff, D. Bouret, G. Luneau and E. Esnault et al., 2003. Role of nonclassical class I genes of the chicken major histocompatibility complex Rfp-Y locus in transplantation immunity. Immunogenetics, 55: 647-651.

Tregaskes, C.A., H.L. Glansbeek, A.C. Gill, L.G. Hunt, J. Burnside and J.R. Young, 2005. Conservation of biological properties of the CD40 ligand, CD154 in a non-mammalian vertebrate. Dev. Comp. Immunol., 29: 361-374.

Vainio, O., C. Kock and A. Toivanin, 1984. B-L antigens (class II) of the chicken major histocompatibility complex T-B interaction. Immunogenetics, 19: 131-140.

Wang, F., E. Lee, M.A. Lowes, A.S. Haider and J. Fuentes-Duculan et al., 2006. Prominent production of IL-20 by CD68+/CD11c+ myeloid-derived cells in psoriasis: Gene regulation and cellular effects. J. Invest. Dermatol., 126: 1590-1599.

Wolk, K., S. Kunz, K. Asadullah and R. Sabat, 2002. Cutting edge: Immune cells as sources and targets of the IL-10 family members. J. Immunol., 168: 5397-5402.

Zarkesh-Esfahani, H., G. Pockley, R.A. Metcalfe, M. Bidlingmaier and Z. Wu et al., 2001. High-dose leptin activates human leukocytes via receptor expression on monocytes. J. Immunol., 167: 4593-4599.

Guillemot, F., A. Billault, O. Pourquie, C. Behar and A.M. Chausse et al., 1988. A molecular map of the chicken major histocompatibility complex: The class IIß genes are closely linked to the class I genes and the nucleolar organizer. EMBO J., 7: 2775-2785.

Downloads

Published

2010-10-15

Issue

Section

Research Article

How to Cite

Hale-McWilliams, L., Cooksey, A. M., Thaxton, J., Pinchuk, L., & Pharr, G. (2010). Proteomic Evaluation of Avian Peripheral Blood Monocytes for Functional ProteinsBroiler. International Journal of Poultry Science, 9(11), 1015–1022. https://doi.org/10.3923/ijps.2010.1015.1022

Most read articles by the same author(s)

1 2 > >>