Effects of Dietary Palm Oil on Production Performance and Serum Parameters of Laying Hens


Authors

  • A. Kolani Centre d'Excellence Régional sur les Sciences Aviaires (CERSA), Université de Lomé, B.P. 1515, Lomé, Togo
  • Y. Adjrah Centre d'Excellence Régional sur les Sciences Aviaires (CERSA), Université de Lomé, B.P. 1515, Lomé, Togo
  • M. Eklou-Lawson Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA), Université de Lomé, B.P. 1515, Lomé, Togo
  • A. Teteh Centre d'Excellence Régional sur les Sciences Aviaires (CERSA), Université de Lomé, B.P. 1515, Lomé, Togo
  • K. Tona Centre d'Excellence Régional sur les Sciences Aviaires (CERSA), Université de Lomé, B.P. 1515, Lomé, Togo

DOI:

https://doi.org/10.3923/ijps.2019.1.6

Keywords:

Egg component, egg weight, feed conversion ratio, laying rate, palm oil, serum parameter

Abstract

Background and Objective: Difficulties in satisfying the energy requirements of birds with cereals, especially maize, have led researchers to investigate the effects of different levels of dietary palm oil on the production performance of laying hens. This study was conducted to investigate the effects of dietary palm oil on the egg production performance and serum parameters of laying hens. Materials and Methods: One hundred eighty 55-week-old Isa Brown laying hens were used in a completely randomized study involving four treatments (groups). Birds in the four groups were fed for 14 weeks with diet 0, 1, 2 or 3. Diet 0 was the basal diet without palm oil, while diets 1, 2 and 3 contained 1, 2 and 3% palm oil obtained by a traditional procedure, respectively. Data were collected on feed intake, egg production, organ weight and biochemical parameters. Results: The results showed that feed intake decreased with an increase in dietary palm oil. Groups D1 (diet 1) and D2 (diet 2) showed high laying rates, low egg weights, low liver weights and a low feed conversion ratio, whereas group D3 (diet 3) had the heaviest eggs and the highest serum total protein concentration. These results might be related to the ability of palm oil to influence feed transit and to improve nutrient digestibility and absorption. Conclusion: Feed containing up to 2% palm oil had a beneficial effect on the egg production performance of laying hens.

References

Klasing, K.C., 2005. Poultry nutrition: A comparative approach. J. Applied Poult. Res., 14: 426-436.

Hussein, A., S. Sherif, A. Al-Juboori, A. Al-Mansorri and K. Alsharafi, 2014. Technical and economic analyses of poultry production in the UAE: Utilizing an evaluation of poultry industry feeds and a cross-section survey. APCBEE Procedia, 8: 266-271.

Hossain, M.A., A.F. Islam and P.A. Iji, 2012. Energy utilization and performance of broiler chickens raised on diets with vegetable proteins or conventional feeds. Asian J. Poult. Sci., 6: 117-128.

Singh, K.S. and B. Panda, 1992. Poultry Nutrition. Kalyani Publisher, New Delhi, India, Pages: 61.

Giachetto, P.F., E.N. Guerreiro, J.A. Ferro, M.I.T. Ferro, R.L. Furlan and M. Macari, 2003. Performance and hormonal profile in broiler chickens fed with different energy levels during post restriction period. Pesquisa Agropecuaria Brasileira, 38: 697-702.

Infante-Rodriguez, F., J. Salinas-Chavira, M.F. Montano-Gomez, O.M. Manriquez-Nunez, V.M. Gonzalez-Vizcarra, O.F. Guevara-Florentino and J.A.R. De Leon, 2016. Effect of diets with different energy concentrations on growth performance, carcass characteristics and meat chemical composition of broiler chickens in dry tropics. SpringerPlus, Vol. 5.

Yunusa, Y., U.D. Doma, D. Zahraddeen, S.B. Abubakar, A. Umar and A. Isah, 2015. Performance and economics of production of broiler chickens fed different dietary energy sources. Asian J. Poult. Sci., 9: 41-49.

Hoan, N.D. and M.A. Khoa, 2016. The effect of different levels of sesame oil on productive performance, egg yolk and blood serum lipid profile in laying hens. Open J. Anim. Sci., 6: 85-93.

Poorghasemi, M., A. Seidavi, A.A.A. Qotbi, V. Laudadio and V. Tufarelli, 2013. Influence of dietary fat source on growth performance responses and carcass traits of broiler chicks. Asian-Aust. J. Anim. Sci., 26: 705-710.

De Sousa Lima, V.B., L.R.B. Dourado, L.P. Machado, D. Biagiotti and S.B.P. de Lima et al., 2016. Cottonseed oil in diets for broilers in the pre-starter and starter phases. PloS One, Vol. 11.

Murugesan, G.R., B.J. Kerr and M.E. Persia, 2013. Evaluation of energy values of various oil sources when fed to broiler chicks. Anim. Ind. Rep., Vol. 659, No. 1.

Ayisi, C.L., J. Zhao and E.J. Rupia, 2017. Growth performance, feed utilization, body and fatty acid composition of Nile tilapia (Oreochromis niloticus) fed diets containing elevated levels of palm oil. Aquacult. Fish., 2: 67-77.

Babalola, T.O., D.F. Apata, J.S. Omotosho and M.A. Adebayo, 2011. Differential effects of dietary lipids on growth performance, digestibility, fatty acid composition and histology of African catfish (Heterobranchus longifilis) fingerlings. Food Nutr. Sci., 2: 11-21.

Adam, S.K., N.A. Sulaiman, A.G.M. Top and K. Jaarin, 2007. Heating reduces vitamin E content in palm and soy oils. Malays. J. Biochem. Mol. Biol., 15: 76-79.

Jaganath, I., 2016. Nutrigenomics and its application in palm oil nutrition and health research. J. Oil Palm Res., 28: 393-403.

Kang, K.R., G. Cherian and J.S. Sim, 2001. Dietary palm oil alters the lipid stability of polyunsaturated fatty acid-modified poultry products. Poult. Sci., 80: 228-234.

Smink, W., W.J.J. Gerrits, R. Hovenier, M.J.H. Geelen, H.W.J. Lobee, M.W.A. Verstegen and A.C. Beynen, 2008. Fatty acid digestion and deposition in broiler chickens fed diets containing either native or randomized palm oil. Poult. Sci., 87: 506-513.

Mateos, G.G., J.L. Sell and J.A. Eastwood, 1982. Rate of food passage (transit time) as influenced by level of supplemental fat. Poult. Sci., 61: 94-100.

Sturkie, P.D., 1976. Avian Physiology. 3rd Edn., Springer-Verlag, Berlin, Germany, ISBN-13: 978-3-642-96274-5, Pages: 400.

Leeson, S. and J. Summers, 1976. . Fat metabolizable energy values: The effect of fatty acid saturation. Feedstuffs, 48: 26-28.

Grobas, S., J. Mendez, C. de Blas and G.G. Mateos, 1999. Laying hen productivity as affected by energy, supplemental fat and linoleic acid concentration of the diet. Poult. Sci., 78: 1542-1551.

Mateos, G.G. and J.L. Sell, 1980. Influence of carbohydrate and supplemental fat source on the metabolizable energy of the diet. Poult. Sci., 59: 2129-2135.

Chilliard, Y. and A. Ollier, 1994. Alimentation lipidique et metabolisme du tissu adipeux chez les ruminants. Comparaison avec le porc et les rongeurs. INRA Prod. Anim., 7: 293-308.

Gondret, F., 1999. La lipogenese chez le lapin. Importance pour le controle de la teneur en lipides de la viande. INRA Prod. Anim., 4: 301-309.

Jensen-Urstad, A.P. and C.F. Semenkovich, 2012. Fatty acid synthase and liver triglyceride metabolism: Housekeeper or messenger? Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids, 1821: 747-753.

Meshreky, S.Z., M. Mervat, M.A. Arafa, W. Abo and S.A.Z. Gad Alla, 2007. Male and female rabbits performance traits as affected by dietary aflatoxin contamination and its detoxification. Egypt. J. Rabbit Sci., 17: 27-42.

Muzvondiwa, J.V., M.T. Kamanda, C.C. Nyamukanza and C. Mutisi, 2012. Effect of protein and energy levels on faecal progesterone concentration in Sabi ewes during oestrus cycle. Livest. Res. Rural Dev., Vol. 23, No. 5.

Sues, M., 1974. Digestibility and metabolizable energy content of beef tallow for laying hens. Proceedings of the 25th World Poultry Congress, (WPC’74), New Orleans, LA., pp: 367-369.

Ping, B.T.Y. and E.C.L. Gwendoline, 2006. Identification of lutein in crude palm oil and evaluation of carotenoids at various ripening stages of the oil palm fruit. J. Oil Palm Res., 18: 189-197.

Tranbarger, T.J., S. Dussert, T. Joet, X. Argout and M. Summo et al., 2011. Regulatory mechanisms underlying oil palm fruit mesocarp maturation, ripening and functional specialization in lipid and carotenoid metabolism. Plant Physiol., 156: 564-584.

Mustapa, A.N., Z.A. Manan, C.Y.M. Azizi, W.B. Setianto and A.K.M. Omar, 2011. Extraction of β-carotenes from palm oil mesocarp using sub-critical R134a. Food Chem., 125: 262-267.

Sommerburg, O., S. De Spirt, A. Mattern, C. Joachim and C.D. Langhans et al., 2015. Supplementation with red palm oil increases β-carotene and vitamin a blood levels in patients with cystic fibrosis. Mediators Inflamm., Vol. 2015.

Downloads

Published

2018-12-15

Issue

Section

Research Article

How to Cite

Kolani, A., Adjrah , Y., Eklou-Lawson, M., Teteh, A., & Tona, K. (2018). Effects of Dietary Palm Oil on Production Performance and Serum Parameters of Laying Hens. International Journal of Poultry Science, 18(1), 1–6. https://doi.org/10.3923/ijps.2019.1.6

Most read articles by the same author(s)

1 2 3 > >>