Effects of Hibiscus sabdariffa Calyx Supplementation on Productive and Blood Parameters in Broiler Chickens Exposed to Intermittent Heat Stress
DOI:
https://doi.org/10.3923/ijps.2026.25.32Keywords:
Heat stress , Hibiscus sabdariffa, Pro-inflammatory cytokines, polyphenols, broiler chicken.Abstract
Objectives: To evaluate the effects of dietary supplementation with Hibiscus sabdariffa (Hs) calyces on productive performance, hematological parameters, plasma corticosterone and serum concentrations of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in broiler chickens exposed to intermittent heat stress.
Materials and Methods: A total of 208 Cobb 500 broiler chickens were randomly allocated to four experimental groups: Control (thermoneutral conditions, no Hs), CHs (thermoneutral conditions, 2% Hs), Stre (heat stress for 5 consecutive hours per day, no Hs) and Stre/Hs (heat stress, 2% Hs). Two ambient temperature conditions (25 and 35°C) and dietary treatments were applied from day 28 to day 49 of age. Feed intake, water intake, body weight and feed conversion ratio were recorded throughout the experimental period. On day 49, blood samples were collected for leukocyte differential counts and determination of corticosterone, IL-6 and TNF-α concentrations.
Results: Broilers exposed to heat stress (Stre and Stre/Hs) exhibited reduced body weight and feed intake and increased feed conversion ratios, reflecting diminished productive efficiency compared with thermoneutral groups. Heat stress was associated with elevated circulating corticosterone and decreased proportions of lymphocytes and monocytes. Although, Hs supplementation did not improve productive performance, it significantly reduced serum IL-6 and TNF-α concentrations in both thermoneutral and heat-stressed birds, indicating a modulatory effect on the inflammatory response.
Conclusion: Dietary supplementation with 2% H. sabdariffa calyces mitigated the pro-inflammatory response induced by intermittent heat stress, as evidenced by reduced IL-6 and TNF-α concentrations, without significantly affecting productive performance in broiler chickens.
References
Akbarian, A., J. Michiels, J. Degroote, M. Majdeddin, A. Golian and S.D. Smet, 2016. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechnol., Vol. 7. 10.1186/s40104-016-0097-5
Saeed, M., G. Abbas, M. Alagawany, A.A. Kamboh, M.E.A. El-Hack and S. Chao et al, 2019. Heat stress management in poultry farms: A comprehensive overview. J. Therm. Biol., 84: 414-425.
Wasti, S., N. Sah and B. Mishra, 2020. Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals, Vol. 10. 10.3390/ani10081266
Quinteiro-Filho, W.M., M.V. Rodrigues, A. Ribeiro, V. Ferraz-de-Paula, M.L. Pinheiro and J. Palermo-Neto et al, 2012. Acute heat stress impairs performance parameters and induces mild intestinal enteritis in broiler chickens: Role of acute hypothalamic-pituitary-adrenal axis activation. J. Anim. Sci., 90: 1986-1994.
Shakeri, M., J.J. Cottrell, S. Wilkinson, H.H. Le, H.A.R. Suleria and F.R. Dunshea et al, 2019. Growth performance and characterization of meat quality of broiler chickens supplemented with betaine and antioxidants under cyclic heat stress. Antioxidants, Vol. 8. 10.3390/antiox8090336
Beckford, R.C., L.E. Ellestad, M. Proszkowiec-Weglarz, L. Farley, K. Brady and T.E. Porter et al, 2020. Effects of heat stress on performance, blood chemistry, and hypothalamic and pituitary mRNA expression in broiler chickens. Poult. Sci., 99: 6317-6325.
Soleimani, A.F., I. Zulkifli, A.R. Omar and A.R. Raha, 2011. Physiological responses of 3 chicken breeds to acute heat stress. Poult. Sci., 90: 1435-1440.
Ramiah, S.K., E.A. Awad, S. Mookiah and Z. Idrus, 2019. Effects of zinc oxide nanoparticles on growth performance and concentrations of malondialdehyde, zinc in tissues, and corticosterone in broiler chickens under heat stress conditions. Poult. Sci., 98: 3828-3838.
El-Damrawy, S.Z, 2014. Effect of grape seed extract on some physiological changes in broilers under heat stress. Egypt. Poult. Sci. J., 34: 333-343.
Ghanima, M.M.A., M.E.A. El-Hack, S.I. Othman, A.E. Taha, A.A. Allam and A.-M.E. Abdel-Moneim, 2020. Impact of different rearing systems on growth, carcass traits, oxidative stress biomarkers, and humoral immunity of broilers exposed to heat stress. Poult. Sci., 99: 3070-3078.
Kumari, K.N.R. and D.N. Nath, 2018. Ameliorative measures to counter heat stress in poultry. World's Poult. Sci. J., 74: 117-130.
Nawab, A., F. Ibtisham, G. Li, B. Kieser, J. Wu and L. An et al, 2018. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. J. Therm. Biol., 78: 131-139.
Lara, L. and M. Rostagno, 2013. Impact of heat stress on poultry production. Animals, 3: 356-369.
Amer, S.A., H.S. Al-Khalaifah, A. Gouda, A. Osman, N.I.A. Goda and S.K.A. Mohamed et al, 2022. Potential effects of anthocyanin-rich roselle (Hibiscus sabdariffa L.) extract on the growth, intestinal histomorphology, blood biochemical parameters, and the immune status of broiler chickens. Antioxidants, Vol. 11. 10.3390/antiox11030544
Hu, R., Y. He, M.A. Arowolo, S. Wu and J. He, 2019. Polyphenols as potential attenuators of heat stress in poultry production. Antioxidants, Vol. 8. 10.3390/antiox8030067
Nasrawi, M.A, 2013. Evaluation of roselle hibiscus sabdariffa flower as a nutritive additives on the productive performance of broiler. Iraqi J. Vet. Med., 37: 69-74.
Adenkola, A.Y., N.S. Carew, L.D. Ojabo and M.T. Angani, 2016. Comparative studies ascorbic acid and hibiscus sabdariffa calyces against heat-stress inclusion in broiler chicken. Alexandria J. Vet. Sci., 51: 17-23.
Asaniyan, E.K. and V.O. Akinduro, 2021. Haematology and serum biochemistry of broiler chickens offered extracts of dried Roselle plant (Hibiscus sabdariffa) calyx in drinking water. Ife J. Sci., 22: 149-157.
Cobb-Vantress, LLC, 2021. Cobb Broiler Management Guide. Cobb Genetics.
[Direct Link]
Mexico, G, 2019. Manual de Buenas Prácticas Pecuarias en la Producción de Pollo de Engorda.
[Direct Link]
World Organisation for Animal Health, n.d. Codes and Manuals – World Organisation for Animal Health.
[Direct Link]
Council, N.R, 1994. Nutrient Requirements of Poultry. 9th ed., National Academies Press, Washington, DC, USA, ISBN: 978‑0‑309‑04892‑7. Pages:176.
IOS, 2005. Determination of substances characteristic of green and black tea — Part 1: Content of total polyphenols in tea — Colorimetric method using Folin‑Ciocalteu reagent. International Organization for Standardization.
[Direct Link]
Tovstukha, I., V. Bohodist, D. Muzyka, V. Radchuk, K. Kravchenko and A. Vlaschenko, 2025. Dataset on blood parameters including leukocyte profiles of eastern European vespertilionid and rhinolophid bats. Sci. Data, Vol. 12. 10.1038/s41597-025-06274-0
Nawaz, A.H., K. Amoah, Q.Y. Leng, J.H. Zheng, W.L. Zhang and L. Zhang, 2021. Poultry response to heat stress: Its physiological, metabolic, and genetic implications on meat production and quality including strategies to improve broiler production in a warming world. Front. Vet. Sci., Vol. 8. 10.3389/fvets.2021.699081
Souza, L.F.A.D., L.P. Espinha, E.A.D. Almeida, R. Lunedo, R.L. Furlan and M. Macari, 2016. How heat stress (continuous or cyclical) interferes with nutrient digestibility, energy and nitrogen balances and performance in broilers. Livest. Sci., 192: 39-43.
Renaudeau, D., A. Collin, S. Yahav, V.D. Basilio, J.L. Gourdine and R.J. Collier, 2012. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal, 6: 707-728.
Rajaei-Sharifabadi, H., E. Greene, A. Piekarski, D. Falcon, L. Ellestad and S. Dridi et al, 2017. Surface wetting strategy prevents acute heat exposure–induced alterations of hypothalamic stress– and metabolic-related genes in broiler chickens. J. Anim. Sci., 95: 1132-1143.
Goel, A, 2021. Heat stress management in poultry. J. Anim. Physiol. Anim. Nutr., 105: 1136-1145.
Chen, C.-C., J.-D. Hsu, S.-F. Wang, H.-C. Chiang, M.-Y. Yang and C.-J. Wang et al, 2003. Hibiscus sabdariffa extract inhibits the development of atherosclerosis in cholesterol-fed rabbits. J. Agric. Food Chem., 51: 5472-5477.
Aengwanich, W. and M. Suttajit, 2010. Effect of polyphenols extracted from tamarind (Tamarindus indica L.) seed coat on physiological changes, heterophil/lymphocyte ratio, oxidative stress and body weight of broilers (Gallus domesticus) under chronic heat stress. Anim. Sci. J., 81: 264-270.
Ruell, P.A., D. Simar, J.D. Périard, S. Best, C. Caillaud and M.W. Thompson, 2014. Plasma and lymphocyte Hsp72 responses to exercise in athletes with prior exertional heat illness. Amino Acids, 46: 1491-1499.
Xu, Y., X. Lai, Z. Li, X. Zhang and Q. Luo, 2018. Effect of chronic heat stress on some physiological and immunological parameters in different breed of broilers. Poult. Sci., 97: 4073-4082.
Díaz, E.A., W. Narváez-Solarte and J.A. Giraldo, 2016. Alteraciones hematológicas y zootécnicas del pollo de engorde bajo estrés calórico. Información Tecnológica, 27: 221-230.
Abbas, A.K., A.H. Lichtman and S. Pillai, 2018. Inmunología celular y molecular. 9th ed., Elsevier España, S.L.U., Spain, ISBN: 978‑84‑9113‑275‑2. Pages:576.
Zhang, S., J. Ou, Z. Luo and I.H. Kim, 2020. Effect of dietary β-1,3-glucan supplementation and heat stress on growth performance, nutrient digestibility, meat quality, organ weight, ileum microbiota, and immunity in broilers. Poult. Sci., 99: 4969-4977.
Ma, D., Q. Liu, M. Zhang, J. Feng, X. Li and X. Wang et al, 2019. iTRAQ-based quantitative proteomics analysis of the spleen reveals innate immunity and cell death pathways associated with heat stress in broilers (Gallus gallus). J. Proteomics, 196: 11-21.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 L. E. Santillan-Padilla, A. Santerre, J. Bañuelos-Pineda, J. R. Cuéllar-Pérez, M. Rosales-Cortes, L. O. Aguirre-López

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.