Avian Salmonellosis and Colibacillosis: Risk Factors, Antibiotic Resistance, Public Health Impact and Biological Control
DOI:
https://doi.org/10.3923/ijps.2022.90.106Keywords:
Antibiotics, aviculture, colibacillosis, public health, SalmonellosisAbstract
Salmonella spp. and Escherichia coli are the two leading causes of foodborne bacterial zoonosis in the world. Respectively responsible for avian pullorosis/typhosis and colibacillosis in poultry, these pathogens represent major constraints for the poultry industry (layers, broilers) in the world because of the mortality and economic losses generated. The isolation of multidrug resistant Salmonella and E. coli strains in poultry farms in several parts of the world reflects the global aspect of the problem. Antibiotics are essential in the treatment and control of these two bacterial diseases. Resistance results in the progressive ineffectiveness of several families of antibiotics, which constitutes a threat to animal health, food safety and public health. This article reviews the various studies conducted on avian salmonellosis and colibacillosis. The antibiotic molecules to which Salmonella spp. and Escherichia coli strains are resistant are discussed. The virulence and resistance genes associated with the different serotypes are reported. Finally, the risk factors, the impact on public health and some pyhtotherapeutic solutions are described. A better knowledge of this information will allow the poultry industry to make further progress in the elimination of salmonellosis and avian colibacillosis, the reduction of antibiotic use and the potential public health risks.
References
Markos, T. and N. Abdela, 2016. Epidemiology and economic importance of pullorum disease in poultry: A review. Glob. Vet., 17: 228-237.
Kabir, S.M.L., 2010. Avian colibacillosis and salmonellosis: A closer look at epidemiology, pathogenesis, diagnosis, control and public health concerns. Int. J. Environ. Res. Public Health, 7: 89-114.
Sidibé, S., A.B. Traoré, Y.S. Koné, A. Fané and K.W. Coulibaly et al., 2019. Antibiorésistance des souches de Salmonella gallinarum isolées en aviculture moderne en zones périurbaines au mali. Rev. D’élevage méd. Vét. pays tropicaux, Vol. 72.
Mensah, S., A. Aboh, S. Salifou, G. Mensah, P. Sanders, F. Abiola and O. Koudandé, 2014. Risks due to antibiotics residues detected in cow’s milk produced in the center of Benin (Risques dus aux résidus d’antibiotiques détectés dans le lait de vache produit dans le centre Bénin). J. Applied Biosci. (In French). 80: 7102-7112.
Muylaert, A. and J. Mainil, 2013. Résistance bactériennes aux antibiotiques, les mécanismes et leur "contagiosité". Ann. Méd. Vétérinaire, 156: 109-123.
Igbinosa, E.O. and A. Beshiru, 2019. Antimicrobial resistance, virulence determinants, and biofilm formation of Enterococcus species from ready-to-eat seafood. Front. Microbiol., Vol. 10.
Chang, Q., W. Wang, G. Regev‐Yochay, M. Lipsitch and W.P. Hanage, 2015. Antibiotics in agriculture and the risk to human health: How worried should we be? Evol. Applic., 8: 240-247.
Economou, V. and P. Gousia, 2015. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug Resist., 8: 49-61.
Houndje, E.M.B., C.A. Ogni, N. Noudeke, S. Farougou, A.K.I. Youssao and T.M. Kpodekon, 2016. Ethno-veterinary recipes of medicinal plants using for the treatment of foot and mouth disease in Benin (Recettes ethno-vétérinaire à base de plantes médicinales utilisées pour le traitement de la fièvre aphteuse au Bénin). Int. J. Bio. Chem. Sci. (In French). 10: 2090-2107.
Scaria, J., R.U.M. Palaniappan, D. Chiu, J.A. Phan and L. Ponnala et al., 2008. Microarray for molecular typing of Salmonella enterica serovars. Mol. Cell. Probes, 22: 238-243.
El-Sharkawy, H., A. Tahoun, A.E.G.A. El-Gohary, M. El-Abasy and F. El-Khayat et al., 2017. Epidemiological, molecular characterization and antibiotic resistance of Salmonella enterica serovars isolated from chicken farms in Egypt Gut Pathog., Vol. 9.
Golam, H., H.C. Emdadul and H. Mokbul, 2014. Mode of vertical transmission of Salmonella enterica sub. enterica serovar pullorum in chickens. Afr. J. Microbiol. Res., 8: 1344-1351.
Bouda, S.C., A. Kagambèga, L. Bonifait, E. Bako and H. Cisse et al., 2019. Serotypes and multiresistant Salmonella sp. from chicken eggs and laying hens in Burkina Faso. Int. J. Sci., 8: 19-25.
McWhorter, A.R., D. Davos and K.K. Chousalkar, 2015. Pathogenicity of Salmonella strains isolated from egg shells and the layer farm environment in Australia. Applied Environ. Microbiol., 81: 405-414.
Kagambèga, A., L.M. Hiott, D.S. Boyle, E.A. McMillan and P. Sharma et al., 2021. Serotyping of sub-saharan Africa Salmonella strains isolated from poultry feces using multiplex PCR and whole genome sequencing. BMC Microbiol., Vol. 21.
Bodering, A., G. Ndoutamia, B.N. Ngandolo and A. Ngakou, 2017. Use of antibiotics and resistance profile of isolated Salmonella spp. and Escherichia coli strains from poultry exploitations in cities of N’Djamena and Doba in Chad. Int. J. Biol. Chem. Sci., 11: 1669-1684.
Collineau, L., F. Guillon, G. Tribehou, L. Bonifait and C. Dupuy et al., 2021. Bilan d’exécution du programme de lutte contre Salmonella dans les troupeaux des espèces Gallus gallus et Meleagris gallopavo en 2015-2018. Bull. Épidémiologique, Santé Anim. Alimentation n° 94.
Rao, S., L. Linke, E. Doster, D. Hyatt, B.A. Burgess, et al., 2020. Genomic diversity of class I integrons from antimicrobial resistant strains of Salmonella typhimurium isolated from livestock, poultry and humans. PLOS ONE, Vol. 15.
Crabb, H.K., J.L. Allen, J.M. Devlin, S.M. Firestone, C.R. Wilks and J.R. Gilkerson, 2018. Salmonella spp. transmission in a vertically integrated poultry operation: Clustering and diversity analysis using phenotyping (serotyping, phage typing) and genotyping (MLVA). PLOS ONE, Vol. 13.
Abdelkader, A.S., S.S. Oumarou, I.M. Maârouhi, S.A. Boubacar, M.H. Ousseini and B. Yacoubou, 2019. Diversity and distribution of salmonella isolated from poultry offal in Niger (West Africa). Int. J. Microbiol. Biotechnol., 4: 103-112.
Rao, S., L. Linke, E. Doster, D. Hyatt, B.A. Burgess et al., 2019. Escherichia coli and Salmonella spp. isolated from Australian meat chickens remain susceptible to critically important antimicrobial agents. PLOS ONE, Vol. 14.
Ahmed, A.O., M.A. Raji, P.H. Mamman, C.N. Kwanashie, I.A. Raufu et al., 2019. Salmonellosis: Serotypes, prevalence and multi-drug resistant profiles of Salmonella enterica in selected poultry farms, Kwara State, North Central Nigeria. Onderstepoort J. Vet. Res., Vol. 86.
Webber, B., K.A. Borges, T.Q. Furian, N.N. Rizzo and E.C. Tondo et al., 2019. Detection of virulence genes in Salmonella heidelberg isolated from chicken carcasses. Rev. Inst. Med. Trop. São Paulo, Vol. 61.
Khan, A.S., K. Georges, S. Rahaman, W. Abdela and A.A. Adesiyun, 2018. Prevalence and serotypes of Salmonella spp. on chickens sold at retail outlets in Trinidad. Plos One, Vol. 13.
Odoch, T., C. Sekse, T. L’Abee-Lund, H.H. Hansen, C. Kankya and Y. Wasteson, 2018. Diversity and antimicrobial resistance genotypes in non-typhoidal Salmonella isolates from poultry farms in Uganda. Int. J. Environ. Res. Public Health, Vol. 15.
Da Cunha-Neto, A., L.A. Carvalho, R.C.T. Carvalho, D.D. Rodrigues, S.B. Mano, E.E.D. Figueiredo and C.A. Conte-Junior, 2018. Salmonella isolated from chicken carcasses from a slaughterhouse in the state of mato grosso, Brazil: antibiotic resistance profile, serotyping, and characterization by repetitive sequence-based PCR system. Poult. Sci., 97: 1373-1381.
Long, M., H. Yu, L. Chen, G. Wu and S. Zhao et al., 2017. Recovery of Salmonella isolated from eggs and the commercial layer farms. Gut Pathog., Vol. 9.
Akeem, A.O., P.H. Mamman, M.A. Raji, C.N. Kwanashie, I.A. Raufu and A. Aremu, 2017. Distribution of virulence genes in Salmonella serovars isolated from poultry farms in kwara state, Nigeria. Ceylon J. Sci., 46: 69-76.
Fagbamila, I.O., L. Barco, M. Mancin, J. Kwaga and S.S. Ngulukun et al., 2017. Salmonella serovars and their distribution in Nigerian commercial chicken layer farms. PLoS ONE, Vol. 12.
De Souza, J.G.D., A.G. Toledo, C.B. Santana, C.V. Dos Santos, A.P. Mallmann, J.P.B. Da Silva and F.G.D. Pinto, 2017. Chemical composition and antibacterial activity of essential oil and leaf extracts of Zanthoxylum caribaeum Lam. against serotypes of Salmonella (Composição química e atividade antibacteriana do óleo essencial e extratos vegetais das folhas de “Zanthoxylum caribaeum” Lam. frente a sorotipos de “Salmonella”). Rev. Bras. Saúde Prod. Anim. (Portuguese). 18: 446-453.
Chuah, L.O., A.K.S. Syuhada, I.M. Suhaimi, T.F. Hanim and G. Rusul, 2018. Genetic relatedness, antimicrobial resistance and biofilm formation of Salmonella isolated from naturally contaminated poultry and their processing environment in northern Malaysia. Food Res. Int., 105: 743-751.
Dar, M.A., S.M. Ahmad, S.A. Bhat, R. Ahmad and U. Urwat et al., 2017. Salmonella typhimurium in poultry: A review. World's Poult. Sci. J., 73: 345-354.
Abdelkader, A.S., S.S. Oumarou, I.M. Maârouhi, D.B. Ali and B. Yacoubou, 2017. Prévalence et diversité de Salmonella en Afrique : Analyse qualitative et quantitative. Eur. Sci. J., 13: 250-270.
Andoh, L.A., A. Dalsgaard, K. Obiri-Danso, M.J. Newman, L. Barco and J.E. Olsen, 2016. Prevalence and antimicrobial resistance of salmonella serovars isolated from poultry in Ghana. Epidemiol. Infec., 144: 3288-3299.
Mathole, M.A., F.C. Muchadeyi, K. Mdladla, D.P. Malatji, E.F. Dzomba and E. Madoroba, 2017. Presence, distribution, serotypes and antimicrobial resistance profiles of Salmonella among pigs, chickens and goats in south Africa. Food Control, 72: 219-224.
Vinueza-Burgos, C., M. Cevallos, L. Ron-Garrido, S. Bertrand and L.D. Zutter, 2016. Prevalence and diversity of Salmonella serotypes in ecuadorian broilers at slaughter age. PLOS ONE, Vol. 11.
Bennani, L., S. Berrada, B. Salame, M. Aabouch and A.E.O. Lalami., 2016. Evaluation of the hygienic quality the meat and some meat products collected from Fez city, Morocco ( Evaluation de la qualité hygiénique des viandes et de certains produits carnés prélevés de la ville de Fès, Maroc). Int. J. Innov. Applied Stud. (In French). 15: 547-554.
Rodriguez, J.M., I.S. Rondon and N. Verjan, 2015. Serotypes of Salmonella in broiler carcasses marketed at Ibague, Colombia. Brazil. J. Poult. Sci., 17: 545-552.
Sodagari, H.R., Z. Mashak and A. Ghadimianazar, 2015. Prevalence and antimicrobial resistance of Salmonella serotypes isolated from retail chicken meat and giblets in Iran. J. Infec. Dev. Ctries., 9: 463-469.
El-Tawab, A.A.A., F.I. El-Hofy, A.M. Ammar, S.A. Nasef and N.M. Nabil, 2015. Studies on different Salmonella serotypes isolated from poultry in different governorates in Egypt. Benha, Vet. Med. J., 28: 169-175.
Magwedere, K., D. Rauff, G.D. Klerk, K.H. Keddy and F. Dziva, 2015. Incidence of nontyphoidal Salmonella in food-producing animals, animal feed, and the associated environment in south Africa, 2012–2014. Clin. Infect. Dis., 61: S283-S289.
Olobatoke, R.Y. and S.D. Mulugeta, 2015. Incidence of non-typhoidal Salmonella in poultry products in the north west province, South Africa. South Afr. J. Sci., Vol. 111.
Barbour, E.K., D.B. Ayyash, W.Y.A. Alturkistni, A.H.M. Alyahiby and S.S.M. Yaghmoor et al., 2015. Impact of Sporadic reporting of poultry Salmonella serovars from selected developing countries. J. Infect. Dev. Countries, 9: 1-7.
Mir, I.A., S.K. Kashyap and S. Maherchandani, 2015. Isolation, serotype diversity and antibiogram of Salmonella enterica isolated from different species of poultry in India. Asian Pac. J. Trop. Biomed., 5: 561-567.
Nair, A., D.B. Rawool, S. Doijad, K. Poharkar and V. Mohan et al., 2015. Biofilm formation and genetic diversity of Salmonella isolates recovered from clinical, food, poultry and environmental sources. Infec., Genet. Evol., 36: 424-433.
El Allaoui, A., F.R. Filali, N. Ameur, I. Nassri and B. Oumokhtar et al., 2014. Prevalence, antibio-resistance and risk factors for Salmonella in broiler Turkey farms in the province of Khemisset (Morocco). J. World's Poult. Res., 4: 20-29.
Smith, A.M., H. Ismail, M.M. Henton, K.H. Keddy and G.S.S. Network, 2014. Similarities between Salmonella enteritidis isolated from humans and captive wild animals in south Africa. J. Infec. Dev. Ctries., 8: 1615-1619.
Chotinun, S., S. Rojanasthien, F. Unger, P. Tadee and P. Patchanee, 2014. Prevalence and antimicrobial resistance of Salmonella isolated from carcasses, processing facilities and the environment surrounding small scale poultry slaughterhouses in Thailand. Southeast Asian J. Trop. Med. Public Health, 45: 1392-1400.
Rowlands, R.E.G., C.A. Ristori, A.A. Ikuno, M.L. Barbosa, M. Jakabi and B.D.G.D. Franco, 2014. Prevalence of drug resistance and virulence features in Salmonella spp. isolated from foods associated or not with Salmonellosis in Brazil. Rev. Inst. Med. Trop. São Paulo, 56: 461-467.
Agada, G.O.A., I.O. Abdullahi, M. Aminu, M. Odugbo, S.C. Chollom P. R. Kumbish and A.E.J. Okwori , 2014. Prevalence and antibiotic resistance profile of Salmonella isolates from commercial poultry and poultry farm-handlers in jos, plateau state, Nigeria. Br. Microbiol. Res. J., 4: 462-479.
Casarin, L.S., E.C. Tondo, M.P. Klein and A. Brandelli, 2009. Survival of Escherichia coli, Staphylococcus aureus and Salmonella enteritidis in frozen chicken hamburger. J. Muscle Foods, 20: 478-488.
Kemmett, K., N.J. Williams, G. Chaloner, S. Humphrey, P. Wigley and T. Humphrey, 2013. The contribution of systemic Escherichia coli infection to the early mortalities of commercial broiler chickens. Avian Pathol., 43: 37-42.
Stordeur, P., D. Marlier, J. Blanco, E. Oswald and F. Biet et al., 2002. Examination of Escherichia coli from poultry for selected adhesin genes important in disease caused by mammalian pathogenic E. coli. Vet. Microbiol., 84: 231-241.
Fancher, C.A., L. Zhang, A.S. Kiess, P.A. Adhikari, T.T.N. Dinh and A.T. Sukumaran, 2020. Avian pathogenic Escherichia coli and Clostridium perfringens: Challenges in no antibiotics ever broiler production and potential solutions. Microorganisms, 8: 1-27.
Nolan, L.K., J.P. Vaillancourt, N.L. Barbieri and C.M. Logue, 2020. Colibacillosis. In: Diseases of Poultry. Swayne, D.E., M. Boulianne, C.M. Logue, L.R. McDougald and V. Nair et al. (Eds.). John Wiley & Sons, Inc., pp: 770-830.
Goor, A.V., G.A.J. Redweik, Z.R. Stromberg, C.G. Treadwell, H. Xin and M. Mellata, 2020. Microbiome and biological blood marker changes in hens at different laying stages in conventional and cage free housings. Poult. Sci., 99: 2362-2374.
Awad, A.M., N.A. El-Shall, D.S. Khalil, M.E.A. El-Hack and A.A. Swelum et al., 2020. Incidence, pathotyping, and antibiotic susceptibility of avian pathogenic Escherichia coli among diseased broiler chicks. Pathogens, Vol. 9.
Chart, H., H.R. Smith, R.M.L. Ragione and M.J. Woodward, 2000. An investigation into the pathogenic properties of Escherichia coli strains BLR, BL21, DH5alpha and EQ1. J. Applied Microbiol., 89: 1048-1058.
Barnes, H.J., L.K. Nolan and J.-P. Vaillancourt, 2008. Colibacillosis. In: Diseases of Poultry. Saif, Y.M. (Ed.). Blackwell Publishing, pp: 691-737.
Newman, D.M., N.L. Barbieri, A.L. de Oliveira, D. Willis, L.K. Nolan and C.M. Logue, 2021. Characterizing avian pathogenic Escherichia coli (APEC) from colibacillosis cases, 2018. PeerJ, Vol. 9.
Barbieri, N.L., D.W. Nielsen, Y. Wannemuehler, T. Cavender and A. Hussein et al., 2017. Mcr-1 identified in avian pathogenic Escherichia coli (APEC). PLOS ONE, Vol. 12.
Thomrongsuwannakij, T., P.J. Blackall, S.P. Djordjevic, M.L. Cummins and N. Chansiripornchai, 2020. A comparison of virulence genes, antimicrobial resistance profiles and genetic diversity of avian pathogenic Escherichia coli (APEC) isolates from broilers and broiler breeders in Thailand and Australia. Avian Pathol., 49: 457-466.
Xu, X., Q. Sun and L. Zhao, 2019. Virulence factors and antibiotic resistance of avian pathogenic Escherichia coli in eastern China. J. Vet. Res., 63: 317-320.
Rekaz, A.I., L.C. Tillie, Q.L. Shawkat, B. Ehab-Abu, G. Liam and H.T. Yaser, 2019. Identification of Escherichia coli from broiler chickens in Jordan, their antimicrobial resistance, gene characterization and the associated risk factors. BMC Vet. Res.
El Allaoui, A., F. Rhazi Filali, N. Ameur and B. Bouchrif, 2017. Contamination of broiler turkey farms by Salmonella spp. in Morocco: prevalence, antibiotic resistance and associated risk factors. Rev. Sci. Tech. l'OIE, 36: 935-946.
Jibril, A.H., I.N. Okeke, A. Dalsgaard, E. Kudirkiene, O.C. Akinlabi, M.B. Bello and J.E. Olsen, 2020. Prevalence and risk factors of Salmonella in commercial poultry farms in Nigeria. PLOS ONE, Vol. 15.
Islam, M.M., M.N. Islam, F.M. Sharifuzzaman, M.A. Rahman and J.U. Sharifuzzaman, 2014. Isolation and identification of Escherichia coli and Salmonella from poultry litter and feed. Int. J. Nat. Social Sci., 1: 1-7.
Wilkinson, K.G., E. Tee, R.B. Tomkins, G. Hepworth and R. Premier, 2011. Effect of heating and aging of poultry litter on the persistence of enteric bacteria. Poult. Sci., 90: 10-18.
Agada, G.O.A., I.O. Abdullahi, M. Aminu, M. Odugbo, S.C. Chollom, L. A. Okeke and A.E.J. Okwori, 2014. Risk factors associated with Salmonella species contamination of commercial poultry farms in Jos, Plateau state, Nigeria. Int. J. Curr. Res., 6: 6292-6301.
Vanderkerchove, D., P. de Herdt, H. Laevens and F. Pasmans, 2004. Risk factors associated with colibacillosis outbreaks in caged layer flock. Avain Pathol., 33: 337-342.
Schouler, C., B. Schaeffer, A. Bree, A. Mora and G. Dahbi et al., 2012. Diagnostic strategy for identifying avian pathogenic Escherichia coli based on four patterns of virulence genes. J. Clin. Microbiol., 50: 1673-1678.
Rahman, M., S. Al Mazid, K. Hasan, Z.I. Rony, M. Amin and T. Rahman, 2016. Immunogenicity of Salmonella pullorum killed vaccine in selected breeder flock. Int. J. Nat. Soc. Sci., Vol. 3.
Hamid, N. and S.K. Jain, 2008. Characterization of an outer membrane protein of Salmonella enteric serovar Typhimurium that confers protection against typhoid. Clin. Vaccine Immunol., 15: 1461-1471.
Lagadinou, M., M.O. Onisor, A. Rigas, D.V. Musetescu and D. Gkentzi et al., 2020. Antimicrobial properties on non-antibiotic drugs in the era of increased bacterial resistance. Antibiotics, Vol. 9.
Kapoor, G., S. Saigal and A. Elongavan, 2017. Action and resistance mechanisms of antibiotics: A guide for clinicians. J. Anaesthesiol. Clin. Pharmacol., 33: 300-305.
Doublet, B., A. Bousquet‐mélou and J.Y. Madec, 2012. Le concept « One Health » en antibiorésistance et les flux de gènes. Innovations Agronomiques, 24: 79-90.
Guardabassi, L. and P. Courvalin, 2005. Modes of Antimicrobial Action and Mechanisms of Bacterial Resistance. In: Antimicrobial Resistance in Bacteria of Animal Origin. Aarestrup, F.M. (Ed.). ASM Press, Washington, DC, USA, pp: 1-18.
Carle, S., 2009. La résistance aux antibiotiques : un enjeu de santé publique important ! Pharmactuel, 42: 6-21.
Alekshun, M.N. and S.B. Levy, 2007. Molecular mechanisms of antibacterial multidrug resistance. Cell, 128: 1037-1050.
Davin-Regli, A. M. Masi and J.-M. Pagès, 2020. Role of porins in antibiotic resistance. (Le rôle des porines dans la résistance aux antibiotiques). Revue Francoph. Lab. (In French). 519: 28-39.
Bredin, J., N. Saint, M. Malléa, E. DÉ, G. Molle, J.M. Pagès and V. Simonet, 2002. Alteration of pore properties of Escherichia coli OmpF induced by mutation of key residues in anti-loop 3 region. Biochem. J., 363: 521-528.
Nikaido, H., 2009. Multidrug resistance in bacteria. Annu. Rev. Biochem., 78: 119-146.
Quale, J., S. Bratu, J. Gupta and D. Landman, 2006. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother., 50: 1633-1641.
Madec, J., S. Martin, P. Libereton and T. Rambaud, 2008. Prevalence of fecal carriage of acquired expanded-spectrum cephalosporin resistance in Enterobacteriaceae strains from cattle in France. J. Clin. Microbiol., 46: 1566-1567.
Parveen, R.M., B.N. Harish and S.C. Parija, 2010. AmpC beta lactamases among gram negative clinical isolates from a tertiary hospital, South India. Braz. J. Microbiol., 41: 596-602.
Yamamoto, M., M. Nagao, G. Hotta, Y. Matsumura and A. Matsushima et al., 2012. Molecular characterization of IMP-type metallo-β-lactamases among multidrug-resistant Achromobacter xylosoxidans. J. Antimicrob. Chemother., 67: 2110-2113.
Decré, D., 2012. Acinetobacter baumannii and multiresistance: a successful adaptative model. (Acinetobacter baumannii et résistance aux antibiotiques: un modèle d’adaptation). Revue Francophone Laboratoires (In French). 2012: 43-52.
Re, S.D. and M.C. Ploy, 2012. Antibiotiques et réponse SOS bactérienne: Une voie efficace d’acquisition des résistances aux antibiotiques. Med. Sci. (In French). 28: 179-184.
Martínez, J.L., F. Baquero and D.I. Andersson, 2007. Predicting antibiotic resistance. Nat. Rev. Microbiol., 5: 958-965.
Guerin, E., G. Cambray, N. Sanchez-Alberola, S. Campoy, I. Erill et al., 2009. The SOS response controls integron recombination. Science, 324: 1034-1034.
Landecker, H., 2016. Antibiotic resistance and the biology of history. Body Soc., 22: 19-52.
Pal, C., J. Bengtsson-Palme, E. Kristiansson and D.G.J. Larsson, 2016. The structure and diversity of human, animal and environmental resistomes. Microbiome, Vol. 4.
Okombe, E.V., W.L.R. Luboya, M.G. Nzuzi and S.C. Pongombo, 2016. Détection des résidus d’antibiotiques dans les denrées alimentaires d’origine bovine et aviaire commercialisées à Lubumbashi (RD Congo). J. Applied Biosci., 102: 9763-9770.
Sanders, P., A. Perrin-Guyomard and G. Moulin, 2017. Evolution of antimicrobial usage in food-producing animals. (Évolution de l’utilisation des antibiotiques en production animale). Cahiers Nutr. Diét. (In French). 52: 301-311.
Forslund, K., S. Sunagawa, L.P. Coelho and P. Bork, 2014. Metagenomic insights into the human gut resistome and the forces that shape it. Bioessays, 36: 316-329.
Zwe, Y.H., V.C.Y. Tang, K.T. Aung, R.A. Gutiérrez, L.C. Ng and H.G. Yuk, 2018. Prevalence, sequence types, antibiotic resistance and, gyrA mutations of Salmonella isolated from retail fresh chicken meat in Singapore. Food Control, 90: 233-240.
Agunos, A., D. Leger and C. Carson, 2012. Review of antimicrobial therapy of selected bacterial diseases in broiler chickens in Canada. Can. Vet. J., 53: 1289-1300.
Nhung, N.T., N. Chansiripornchai and J.J. Carrique-Mas, 2017. Antimicrobial resistance in bacterial poultry pathogens: A review. Front. Vet. Sci., Vol. 4.
Borges, K., T. Furian, S. Souza, C. Salle, H. Moraes and V. Nascimento, 2019. Antimicrobial resistance and molecular characterization of Salmonella enterica serotypes isolated from poultry sources in Brazil. Braz. J. Poult. Sci., Vol. 21.
Ziyate, N., B. Karraouan, A. Kadiri, S. Darkaoui, A. Soulaymani and B. Bouchrif, 2016. Prevalence and antimicrobial resistance of Salmonella isolates in moroccan laying hens farms. J. Applied Poult. Res., 25: 539-546.
Varga, C., M.L. Brash, D. Slavic, P. Boerlin and R. Ouckama et al., 2018. Evaluating virulence-associated genes and antimicrobial resistance of avian pathogenic Escherichia coliisolates from broiler and broiler breeder chickens in Ontario, Canada. Avian Dis., 62: 291-299.
Sánchez-Salazar, E., M.E. Gudiño, G. Sevillano, J. Zurita, R. Guerrero-López, K. Jaramillo and W. Calero-Cáceres, 2020. Antibiotic resistance of Salmonella strains from layer poultry farms in central Ecuador. J. Applied Microbiol., 128: 1347-1354.
Langata, L.M., J.M. Maingi, H.A. Musonye, J. Kiiru and A.K. Nyamache, 2019. Antimicrobial resistance genes in Salmonella and Escherichia coli isolates from chicken droppings in Nairobi, Kenya. BMC Res. Notes.
Taddese, D., T. Tolosa, B. Deresa, M. lakow, A. Olani and E. Shumi, 2019. Antibiograms and risk factors of salmonella isolates from laying hens and eggs in Jimma Town, South Western Ethiopia. BMC Res. Notes, Vol. 12.
Ramatla, T., M.O. Taioe, O.M.M. Thekisoe and M. Syakalima, 2019. Confirmation of antimicrobial resistance by using resistance genes of isolated Salmonella spp. in chicken houses of North West, South Africa. J. World's Poult. Res., 9: 158-165.
Campos, J., J. Mourão, L. Silveira, M. Saraiva and C.B. Correia et al., 2018. Imported poultry meat as a source of extended-spectrum cephalosporin-resistant CYM-2-producing Salmonella heidelberg and Salmonella minnesota in the European Union, 2014–2015. Int. J. Antimicrob. Agents, 51: 151-154.
Ramadan, H., S.K. Gupta, P. Sharma, K.I. Sallam and L.M. Hiott et al., 2018. Draft genome sequences of two ciprofloxacin-resistant Salmonella enterica subsp. enterica serotype Kentucky ST198 isolated from retail chicken carcasses in Egypt. J. Global Antimicrob. Resist., 14: 101-103.
Abba, H., M.K. Somda, B.B.B. Antipas, N. Barro and A.S. Traore, 2017. Prevalence and susceptibility to antibiotics of strains of non-typhoid Salmonella spp. isolated from chicken meat in Chad. (Prévalence et susceptibilité aux antibiotiques des souches de Salmonella spp. non typhiques isolées de la viande de poulets au Tchad). Int. J. Bio. Chem. Sci., (In French). 11: 107-117.
Vuthy, Y., K.S. Lay, H. Seiha, A. Kerleguer and A. Aidara-Kane, 2017. Antibiotic susceptibility and molecular characterization of resistance genes among Escherichia coli and among Salmonella subsp. in chicken food chains. Asian Pac. J. Trop. Biomed., 7: 670-674.
Phagoo, L. and H. Neetoo, 2015. Antibiotic resistance of Salmonella in poultry farms of Mauritius. J. World's Poult. Res., 5: 42-47.
Fitch, F.M., M.S. Carmo-Rodrigues, V.G.S. Oliveira, M.V. Gaspari, A. dos Santos, J.B. De Freitas and A.C.C. Pignatari, 2016. β-lactam resistance genes: characterization, epidemiology, and first detection of blaCTX-m-1 and blaCTX-m-14 in Salmonella spp. isolated from poultry in Brazil—Brazil ministry of agriculture's pathogen reduction program. Microb. Drug Resist., 22: 164-171.
Abdel-Maksoud, M., R. Abdel-Khalek, A. El-Gendy, R.F. Gamal, H.M. Abdelhady and B.L. House, 2015. Genetic characterisation of multidrug-resistant Salmonella enterica serotypes isolated from poultry in Cairo, Egypt. Afr. J. Lab. Med., Vol. 4.
Gharieb, R.M., Y.H. Tartor and M.H.E. Khedr, 2015. Non-typhoidal Salmonella in poultry meat and diarrhoeic patients: Prevalence, antibiogram, virulotyping, molecular detection and sequencing of class I integrons in multidrug resistant strains. Gut Pathogens, VoL. 7.
Kuznetsova, M.V., J.S. Gizatullina, L.Y. Nesterova and M.S. Erjavec, 2020. Escherichia coli isolated from cases of colibacillosis in Russian poultry farms (Perm Krai): sensitivity to antibiotics and bacteriocins. Microorganisms, Vol. 8.
McIver, K.S., D.G. Amoako, A.L.K. Abia, L.A. Bester, H.Y. Chenia and S.Y. Essack, 2020. Molecular epidemiology of antibiotic-resistant Escherichia coli from farm-to-fork in intensive poultry production in Kwazulu-Natal, South Africa. Antibiotics, Vol. 9.
Song, Y., L. Yu, Y. Zhang, Y. Dai and P. Wang et al., 2020. Prevalence and characteristics of multidrug-resistant mcr-1-positive Escherichia coli isolates from broiler chickens in Tai'an, China. Poult. Sci., 99: 1117-1123.
Meguenni, N., N. Chanteloup, A. Tourtereau, C.A. Ahmed, S. Bounar-Kechih and C. Schouler, 2019. Virulence and antibiotic resistance profile of avian Escherichia coli strains isolated from colibacillosis lesions in central of Algeria. Vet. World, 12: 1840-1848.
Gao, J., X. Duan, X. Li, H. Cao, Y. Wang and S.J. Zheng, 2018. Emerging of a highly pathogenic and multi-drug resistant strain of Escherichia coli causing an outbreak of colibacillosis in chickens. Infect. Genet. Evol., 65: 392-398.
Hoepers, P.G., P.L. Silva, D.A. Rossi, E.C.V. Júnior and B.C. Ferreira et al., 2018. The association between extended spectrum beta-lactamase (ESBL) and ampicillin c (AMPC) beta-lactamase genes with multidrug resistance in Escherichia coli isolates recovered from Turkeys in Brazil. Br. Poult. Sci., 59: 396-401.
Vounba, P., Y. Kane, C. Ndiaye, J. Arsenault, J.M. Fairbrother and R.B. Alambédji, 2018. Molecular characterization of Escherichia coli isolated from chickens with colibacillosis in Senegal. Foodborne Pathog. Dis., 15: 517-525.
Perreten, V., C. Strauss, A. Collaud and D. Gerber, 2016. Colistin resistance gene mcr-1 in avian-pathogenic Escherichia coli in South Africa. Antimicrob. Agents Chemother., 60: 4414-4415.
Linciano, P., V. Cavalloro, E. Martino, J. Kirchmair, R. Listro, D. Rossi and S. Collina, 2020. Tackling antimicrobial resistance with small molecules targeting LsrK: Challenges and opportunities. J. Medic. Chem., 63: 15243-15257.
Najafi, S., M. Rahimi and Z. Nikousefat, 2019. Extra-intestinal pathogenic Escherichia coli from human and avian origin: Detection of the most common virulence-encoding genes. Vet. Res. Forum, 10: 43-49.
Mehdi, Y., M.P. Létourneau-Montminy, M.L. Gaucher, Y. Chorfi and G. Suresh et al., 2018. Use of antibiotics in broiler production: Global impacts and alternatives. Anim. Nutr., 4: 170-178.
Clifford, K., D. Desai, C.P. da Costa, H. Meyer and K. Klohe et al., 2018. Antimicrobial resistance in livestock and poor quality veterinary medicines. Bull. World Health Orgization, 96: 662-664.
Ewers, C., E.M. Antao, I. Diehl, H.C. Philipp and L.H. Wieler, 2009. Intestine and environment of the chicken as reservoirs for extraintestinal pathogenic Escherichia coli strains with zoonotic potential. Appl. Environ. Microbiol., 75: 184-192.
Johnson, T.J., C.M. Logue, Y. Wannemuehler, S. Kariyawasam and C. Doetkott et al., 2009. Examination of the source and extended virulence genotypes of Escherichia coli contaminating retail poultry meat. Foodborne Pathogens Dis., 6: 657-667.
Dhama, K., S. Chakraborty, R. Barathidasan, R. Tiwari, S. Rajagunalan and S.D. Singh, 2013. Escherichia coli, an economically important avian pathogen, its disease manifestations, diagnosis and control and public health significance: A review. Res. Opin. Anim. Vet. Sci., 3: 179-194.
Katie, L.H., R.H. Davies and E.J. Threlfall, 2005. Mechanisms of quinolone resistance in Escherichia coli and Salmonella: Recent developments. Int. J. Antimicrob. Agents., 25: 358-373.
Rahman, M.T., M.A. Sobur, M.S. Islam, S. Ievy and M.J. Hossain et al., 2020. Zoonotic diseases: etiology, impact, and control. Microorganisms, Vol. 8.
Mellata, M., 2013. Human and avian extraintestinal pathogenic Escherichia coli: Infections, zoonotic risks and antibiotics resistance trends. Foodborne Pathogens Dis., 11: 916-931.
EFSA and ECDC, 2018. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J., Vol. 16.
Dookeran, M.M, G.S. Baccus-Taylor, J.O. Akingbala, B. Tameru and A.M. Lammerding, 2012. Transmission of Salmonella on broiler chickens and carcasses from production to retail in Trinidad and Tobago. J. Agric. Biodivers Res., 1: 78-84.
Ricke, S.C., 2017. Insights and challenges of Salmonella infection of laying hens. Curr. Opin. Food Sci., 18: 43-49.
Pires, S.M., A.R. Vieira, T. Hald and D. Cole, 2014. Source attribution of human Salmonellosis: An overview of methods and estimates. Foodborne Pathog. Dis., 11: 667-676.
Ravel, A., J. Greig, C. Tinga, E. Todd, G. Campbell, M. Cassidy, B. Marshall and F. Pollari, 2009. Exploring historical canadian foodborne outbreak data sets for human illness attribution. J. Food Prot., 72: 1963-1976.
De Knegt, L.V., S.M. Pires and T. Hald, 2014. Attributing foodborne Salmonellosis in humans to animal reservoirs in the European union using a multi-country stochastic model. Epidemiol. Infec., 143: 1175-1186.
Moffatt, C.R.M., J. Musto, N. Pingault, M. Miller and R. Stafford et al., 2016. Salmonella typhimurium and outbreaks of egg-associated disease in Australia, 2001 to 2011. Foodborne Pathog. Dis., 13: 379-385.
Kalaba, V., B. Golić, Ž. Sladojević and D. Kalaba, 2017. Incidence of Salmonella Infantis in poultry meat and products and the resistance of isolates to antimicrobials. IOP Conf. Ser.: Earth Environ. Sci., Vol. 85.
Sharma, V.K. and S.A. Carlson, 2000. Simultaneous detection of Salmonella strains and Escherichia coli O157:H7 with fluorogenic PCR and single-enrichment-broth culture. Applied Environ. Microbiol., 66: 5472-5476.
Scallan, E., R.M. Hoekstra, F.J. Angulo, R.V. Tauxe and M.A. Widdowson et al., 2011. Foodborne illness acquired in the United States-major pathogens. Emerg. Infect. Dis., 17: 7-15.
CDC., 2019. Outbreak of multidrug-resistant Salmonella infections linked to raw chicken products. https://www.cdc.gov/salmonella/infantis-10-18/index.html#:~:text=Investigation%20Detai%20ls-,February%2021%2C%202019,%2DFSIS)%20monitored%%2020the%20outbreak
Johnson, R., E. Mylona and G. Frankel., 2018. Typhoidal Salmonella: Distinctive virulence factors and pathogenesis. Cel. Microbiol., Vol. 20.
Tawyabur, M., M.S. Islam, M.A. Sobur, M.J. Hossain and M.M. Mahmud et al., 2020. Isolation and characterization of multidrug-resistant Escherichia coli and Salmonella spp. from healthy and diseased Turkeys. Antibiotics, Vol. 9.
Varga, C., M.T. Guerin, M.L. Brash, D. Slavic, P. Boerlin and L. Susta, 2019. Antimicrobial resistance in fecal Escherichia coli and Salmonella enterica isolates: a two-year prospective study of small poultry flocks in Ontario, Canada. BMC Vet. Res., Vol. 15.
Guo, Z., C. hao Su, J. Huang and J. Niu, 2015. A food-borne outbreak of gastroenteritis caused by different Salmonella serotypes in 2 universities in Xiamen, Fujian, China, in 2012. Japanese J. Infect. Dis., 68: 187-191.
Foley, S.L., A.M. Lynne and R. Nayak, 2008. Salmonella challenges: Prevalence in swine and poultry and potential pathogenicity of such isolates. J. Anim. Sci., 86: E149-E162.
Gantois, I., R. Ducatelle, F. Pasmans, F. Haesebrouck, R. Gast, T.J. Humphrey and F. van Immerseel, 2009. Mechanisms of egg contamination by Salmonella enteritidis. FEMS Microbiol. Rev., 33: 718-738.
Berger, C.N., R.K. Shaw, D.J. Brown, H. Mather and S. Clare et al., 2009. Interaction of Salmonella enterica with basil and other salad leaves. ISME J., 3: 261-265.
CDC., 2013. Multistate Outbreak of Salmonella Heidelberg Infections Linked to Chicken. t.ly/IpKW
Pulido-Landínez, M., 2019. Food safety - Salmonella update in broilers. Anim. Feed Sci. Technol., 250: 53-58.
Rodriguez-Siek, K.E., C.W. Giddings, C. Doetkott, T.J. Johnson, M.K. Fakhr and L.K. Nolan, 2005. Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. Microbiology, 151: 2097-2110.
Da Silva, G.C., C.C. Rossi, M.F. Santana, P.R. Langford, J.T. Bossé and D.M.S. Bazzolli, 2017. p518, a small floR plasmid from a South American isolate of Actinobacillus pleuropneumoniae. Vet. Microbiol., 204: 129-132.
Dieye, P.I. and S.O. Sarr, 2020. État de la recherche de molécules cibles antimicrobiennes issues de plantes en Afrique. Afr. Sci., 16: 348-374.
Kpodekon, M.T., K.C. Boko, J.G. Mainil, S. Farougou and P. Sessou et al., 2013. Chemical composition and in vitro test of efficacy of essential oils extracted from fresh leaves of commun basilic (Ocimum basilicum) and of tropical basilic (Ocimum gratissimum) against Salmonella enterica serotype Oakland and Salmonella enterica serotype Legon. (Composition chimique et test d’efficacité in vitro des huiles essentielles extraites de feuilles fraîches du basilic commun (Ocimum basilicum) et du basilic tropical (Ocimum gratissimum) sur Salmonella enterica sérotype Oakland et Salmonella enterica sérotype Legon). J. Soc. Ouest-Afr. Chim., 35: 41-48.
Salem, M.B., H. Affes, A. Daoud, S. Hammami, Z. Sahnoun et al., 2021. Antimicrobial activities of Tunisian extracts of artichoke leaves (Cynara scolymus L.). J. I. M. Sfax, 21: 17-23.
Carole, B.A., A.K. Rivière and K.A.T. Germain, 2021. Inhibition of the growth of multidrugs resistant avian Salmonella strains by aqueous and ethanolic extracts of Mallotus oppositofolius (Geisel.) Müll.-Arg (Euphorbiaceae). Int. J. Agric. Biosci., 10: 128-133.
Seyedtaghiya, M.H., B.N. Fasaei and S.M. Peighambari, 2021. Antimicrobial and antibiofilm effects of Satureja hortensis essential oil against Escherichia coli and Salmonella isolated from poultry. Iran. J. Microbiol., 13: 74-80.
Moungang, L.M., L.S. Sidjui, H.N. Bayaga, J.N. Mfouapon, O. Nguélé, H.K. Gonsu and B. Ngameni, 2021. Phytochemical screening and in vitro evaluation of the antibacterial activity of organic extracts from the root bark of Cussonia arborea (Araliaceae). J. Applied Biotechnol., Vol. 9.
Bashige, V.C., A.S. Bakari, P.N. Okusa, E.M. Kalonda and J.B.S. Lumbu, 2020. Phytochemical screening and antimicrobial activity of six edible rhizomes used in traditional medicine in lubumbashi (DRC). (Criblage phytochimique et activité antimicrobienne de six rhizomes comestibles utilisés en médecine traditionnelle à Lubumbashi (RDC)). Int. J. Bio. Chem. Sci., (In French). 14: 1367-1380.
Etame, G.L., M.J.P. Nda, E.C. Okalla, H. Ndounda, S. Sikadeu et al., 2019. Evaluation of bacterial activity in vitro on Salmonella enterica of typhi stereotype of drugs of medicinal plants, Annickia chlorantha (Oliv.) Setten & Maas, Alstonia boonei de wild and costus afer ker gawl used in the treatment of typhoid fever Saudi J. Biomed. Res., 4: 237-243.
Adzitey, F., A. Agbolosu and U.J. Udoka, 2019. Antibacterial effect of aloe vera gel extract on Escherichia coli and Salmonella enterica isolated from the gastrointestinal tract of guinea fowls. J. World's Poult. Res., 9: 166-173.
Nestor, A.O., B.K. Cyrille, S. Philippe, Y. Mahudro and K.S. Gwladys et al., 2019. Antibacterial activity of essential oil of Aeollanthus pubescens on multidrug resistant strains of Salmonella and Escherichia coli isolated from laying hens farming in Benin. Adv. Microbiol., 09: 804-823.
Habibi, H., N. Ghahtan and S. Morammazi, 2018. The effects of some herbal essential oils against Salmonella and Escherichia coli isolated from infected broiler flocks. J. World Poult. Res., 8: 74-80.
Ortega, A.R., E. Guinoiseau, Y. Quilichini, D.D. Serra and J.P. Poli et al., 2021. Mode of action of Lippia graveolens essential oil on Salmonella enterica subsp. enterica serovar typhimurium. Res. Square, Vol. 22.
Ayéna, A.C., D.T.M. Agassounon, H. Adoukonou-Sagbadja, G.A. Mensah, C. Agbangla, L. Baba-Moussa and C. Ahanhanzo 2017. Potentiels antimicrobiens de Euphorbia hirta L. et de Phyllanthus amarus Schumach & Thonn, deux euphorbiaceae utilisées dans le traitement des gastroentérites au Sud du Bénin. Rev. Microbiol. Ind. San. Environn., Vol. 11.
Boko, K.C., T.M. Kpodekon, O.N. Aguidissou, P. Sessou, D. Sohounhloue and S. Farougou, 2016. Comparative study of antibacterial activity of some medicinal plants extracts against strains of Salmonella isolated from guinea fowl in Benin. Res. J. Pharm. Biol. Chem. Sci., 7: 853-860.
Thakur, S., R.K. Asrani, R.D. Patil and M. Thakur, 2018. Antimicrobial potential of medicinal plants of himachal pradesh against pathogenic Escherichia coli, Salmonella gallinarum and Salmonella Typhimurium. Vet. Res. Int., 6: 67-71.
Sessou, P., B.A. Yaovi, M. Yovo, J. Gamedjo and F. Dossa et al., 2018. Phytochemistry and antibacterial activity of plants extracts compared with two commercial antibiotics against E coli responsible for avian colibacillosis in Benin. Int. J. Phytomed., 10: 168-174.
Ikele, O.M., I.M. Ezeonu and C.N. Umeh, 2020. Prebiotic roles of Ocimum gratissimum extract in the control of colibacillosis in broilers. J. Anim. Health Prod., 8: 205-211.
Elmowalid, G.A., M.I.A. El-Hamid, A.M.A. El-Wahab, M. Atta, G.A. El-Naser and A.M. Attia, 2019. Garlic and ginger extracts modulated broiler chicks innate immune responses and enhanced multidrug resistant Escherichia coli O78 clearance. Comp. Immunol., Microbiol. Infect. Dis., Vol. 66.
Tidiane, K., O. Abou, O. Karamoko, S. Moussa, S.N. Daniel, O. Lacina and C. Adama, 2017. Therapeutic activity of Thonningia sanguinea aqueous extract, Vahl on an experimental colibacillosis in chicken. J. Phytopharmacology, 6: 282-287.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 The Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.