Effect of Direct-fed Microbials, Bacillus subtilis, on Production Performance, Serotonin Concentrations and Behavioral Parameters in a Selected Dominant Strain of White Leghorn Hens
DOI:
https://doi.org/10.3923/ijps.2018.106.115Keywords:
Aggression, laying hen, probiotic, production performance, serotoninAbstract
Background and Objective: Probiotics modulate stress-induced changes of physiological homeostasis and behavioral exhibition through regulating the microbiota-gut-brain axis. The aim of this study was to assess if dietary supplementation of probiotic, Bacillus subtilis, reduces aggressive behaviors in laying hens following social challenge. Methodology: Hens (n = 12) of an aggressive stain (Dekalb XL) were housed in single-hen cage prior to the study. At 24 weeks of age, the hens were paired based on their BW to identify the dominance rank within each pair (0 day). The subordinator and dominator of each pair were individually fed a regular layer diet or the diet mixed with 250 ppm probiotic for 2 weeks (days 14). Results: Data showed that the exhibition of aggressive behaviors in the regular diet fed subordinates were not affected by the treatment (p>0.05), while the frequency of threat kick (p = 0.04) was reduced and aggressive pecking (p = 0.053) had a tendency to be lower in the probiotic fed dominates compared to the levels at 0 day. Plasma concentrations of serotonin were also reduced in the probiotic fed dominant hens (p = 0.02). There were no treatment effects on plasma tryptophan levels, body weight gain and egg production (p>0.05, respectively). Conclusion: The data indicate that dietary probiotic supplementation could be a useful management tool for preventing aggressive behaviors in laying hens.
References
Lay, Jr. D.C., R.M. Fulton, P.Y. Hester, D.M. Karcher and J.B. Kjaer et al., 2011. Hen welfare in different housing systems. Poult. Sci., 90: 278-294.
Craig, J.V. and W.M. Muir, 1996. Group selection for adaptation to multiple-hen cages: Behavioral responses. Poult. Sci., 75: 1145-1155.
Duncan, I.J.H., G.S. Slee, E. Seawright and J. Breward, 1989. Behavioural consequences of partial beak amputation (beak trimming) in poultry. Br. Poult. Sci., 30: 479-488.
Craig, J.V. and W.M. Muir, 1996. Group selection for adaptation to multiple-hen cages: Beak-related mortality, feathering and body weight responses. Poult. Sci., 75: 294-302.
Cicchetti, D. and M.I. Posner, 2005. Cognitive and affective neuroscience and developmental psychopathology. Dev. Psychopathol., 17: 569-575.
Reber, S.O., 2012. Stress and animal models of inflammatory bowel disease-an update on the role of the hypothalamo-pituitary-adrenal axis. Psychoneuroendocrinology, 37: 1-19.
Ko, S.Y. and C.J. Yang, 2008. Effect of green tea probiotics on the growth performance, meat quality and immune response in finishing pigs. Asian Aust. J. Anim. Sci., 21: 1339-1347.
Gibson, G.R. and R. Fuller, 2000. Aspects of in vitro and in vivo research approaches directed toward identifying probiotics and prebiotics for human use. J. Nutr., 130: 391S-395S.
Furr, M., 2014. Orally administered Pediococcus acidilactici and Saccharomyces boulardii-based probiotics alter select equine immune function parameters. J. Equine Vet. Sci., 34: 1156-1163.
Li, Y., H. Zhang, Y.P. Chen, M.X. Yang and L.L. Zhang et al., 2015. Bacillus amyloliquefaciens supplementation alleviates immunological stress in lipopolysaccharide-challenged broilers at early age. Poult. Sci., 94: 1504-1511.
Cartman, S.T., R.M. La Ragione and M.J. Woodward, 2008. Bacillus subtilis spores germinate in the chicken gastrointestinal tract. Applied Environ. Microbiol., 74: 5254-5258.
Gong, J., R.J. Forster, H. Yu, J.R. Chambers, P.M. Sabour, R. Wheatcroft and S. Chen, 2002. Diversity and phylogenetic analysis of bacteria in the mucosa of chicken ceca and comparison with bacteria in the cecal lumen. FEMS Microbiol. Lett., 208: 1-7.
Samanya, M. and K.E. Yamauchi, 2002. Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis var. natto. Comparat. Biochem. Physiol. A: Mol. Integrat. Physiol., 133: 95-104.
Yurong, Y., S. Ruiping, Z. Shimin and J. Yibao, 2005. Effect of probiotics on intestinal mucosal immunity and ultrastructure of cecal tonsils of chickens. Arch. Anim. Nutr., 59: 237-246.
Molnar, A.K., B. Podmaniczky, P. Kurti, I. Tenk, R. Glavits, G.Y. Virag and Z.S. Szabo, 2011. Effect of different concentrations of Bacillus subtilis on growth performance, carcase quality, gut microflora and immune response of broiler chickens. Br. Poult. Sci., 52: 658-665.
Grenham, S., G. Clarke, J.F. Cryan and T.G. Dinan, 2011. Brain-gut-microbe communication in health and disease. Frontiers Physiol., Vol. 2.
Cryan, J.F. and T.G. Dinan, 2012. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci., 13: 701-712.
El Aidy, S., T.G. Dinan and J.F. Cryan, 2015. Gut microbiota: The conductor in the orchestra of immune-neuroendocrine communication. Clin. Ther., 37: 954-967.
Sekirov, I., S.L. Russell, L.C.M. Antunes and B.B. Finlay, 2010. Gut microbiota in health and disease. Physiol. Rev., 90: 859-904.
Clemente, J.C., L.K. Ursell, L.W. Parfrey and R. Knight, 2012. The impact of the gut microbiota on human health: An integrative view. Cell, 148: 1258-1270.
Shahkolahi, A.M. and M.J. Donahue, 1993. Bacterial flora, a possible source of serotonin in the intestine of adult female Ascaris suum. J. Parasitol., 79: 17-22.
Hsu, S.C., K.R. Johansson and M.J. Donahue, 1986. The bacterial flora of the intestine of Ascaris suum and 5-Hydroxytryptamine production. J. Parasitol., 72: 545-549.
Roshchina, V.V., 2010. Evolutionary Considerations of Neurotransmitters in Microbial, Plant and Animal Cells. In: Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health, Lyte, M. and P.P.E. Freestone (Eds.). Springer, New York, pp: 17-52.
Jonnakuty, C. and C. Gragnoli, 2008. What do we know about serotonin? J. Cell. Physiol., 217: 301-306.
Popova, N.K., A.V. Kulikov, D.F. Avgustinovich, N.N. Voitenko and L.N. Trut, 1997. Effect of domestication of the silver fox on the main enzymes of serotonin metabolism and serotonin receptors. Genetika, 33: 370-374.
Weiger, W.A., 1997. Serotonergic modulation of behaviour: A phylogenetic overview. Biol. Rev., 72: 61-95.
Dennis, R.L., Z.Q. Chen and H.W. Cheng, 2008. Serotonergic mediation of aggression in high and low aggressive chicken strains. Poult. Sci., 87: 612-620.
Furness, J.B. and M. Costa, 1982. Neurons with 5-Hydroxytryptamine-like immunoreactivity in the enteric nervous system: Their projections in the Guinea-pig small intestine. Neuroscience, 7: 341-349.
Gershon, M.D., 2013. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr. Opin. Endocrinol. Diabetes Obesity, 20: 14-21.
Pietraszek, M.H., Y. Takada, D. Yan, T. Urano, K. Serizawa and A. Takada, 1992. Relationship between serotonergic measures in periphery and the brain of mouse. Life Sci., 51: 75-82.
Wikoff, W.R., A.T. Anfora, J. Liu, P.G. Schultz, S.A. Lesley, E.C. Peters and G. Siuzdak, 2009. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA., 106: 3698-3703.
Heijtz, R.D., S. Wang, F. Anuar, Y. Qian and B. Bjorkholm et al., 2011. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. U.S.A., 108: 3047-3052.
Clarke, G., R.M. Stilling, P.J. Kennedy, C. Stanton, J.F. Cryan and T.G. Dinan, 2014. Minireview: Gut microbiota: The neglected endocrine organ. Mol. Endocrinol., 28: 1221-1238.
Sudo, N., Y. Chida, Y. Aiba, J. Sonoda and N. Oyama et al., 2004. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol., 558: 263-275.
Foster, J.A. and K.A.M.V. Neufeld, 2013. Gut-brain axis: How the microbiome influences anxiety and depression. Trends Neurosci., 36: 305-312.
Romeo, R.D., 2010. Pubertal maturation and programming of hypothalamic-pituitary-adrenal reactivity. Front. Neuroendocrinol., 31: 232-240.
Dennis, R.L. and H.W. Cheng, 2011. The dopaminergic system and aggression in laying hens. Poult. Sci., 90: 2440-2448.
Dennis, R.L., A.G. Fahey and H.W. Cheng, 2013. Alterations to embryonic serotonin change aggression and fearfulness. Aggressive Behav., 39: 91-98.
Pym, R.A.E. and P.J. Nicholls, 1979. Selection for food conversion in broilers: Direct and correlated responses to selection for body-weight gain, food consumption and food conversion ratio. Br. Poult. Sci., 20: 73-86.
De Groot, J., M.A.W. Ruis, J.W. Scholten, J.M. Koolhaas and W.J.A. Boersma, 2001. Long-term effects of social stress on antiviral immunity in pigs. Physiol. Behav., 73: 145-158.
Cheng, H.W. and A. Fahey, 2009. Effects of group size and repeated social disruption on the serotonergic and dopaminergic systems in two genetic lines of white leghorn laying hens. Poult. Sci., 88: 2018-2025.
Wilcox, C.S., M.M. Schutz, M.R. Rostagno, D.C. Lay Jr. and S.D. Eicher, 2013. Repeated mixing and isolation: Measuring chronic, intermittent stress in Holstein calves. J. Dairy Sci., 96: 7223-7233.
Koolhaas, J.M., C.M. Coppens, S.F. de Boer, B. Buwalda, P. Meerlo and P.J. Timmermans, 2013. The resident-intruder paradigm: A standardized test for aggression, violence and social stress. J. Vis. Exp., Vol. 77.
Pennisi, E., 2005. Strong personalities can pose problems in the mating game: A closer look at confrontational behavior in various animals shows that aggression may help individuals survive, but it can impair reproductive success. Science, 309: 694-696.
Cheng, H.W., 2010. Breeding of tomorrow's chickens to improve well-being. Poult. Sci., 89: 805-813.
Majolo, B., A.D.B. Vizioli and J. Lehmann, 2016. The effect of intergroup competition on intragroup affiliation in primates. Anim. Behav., 114: 13-19.
Nandy, B., P. Dasgupta, S. Halder and T. Verma, 2016. Plasticity in aggression and the correlated changes in the cost of reproduction in male Drosophila melanogaster. Anim. Behav., 114: 3-9.
Banks, E.M., D.G.M. Wood-Gush, B.O. Hughes and N.J. Mankovich, 1979. Social rank and priority of access to resources in domestic fowl. Behav. Processes, 4: 197-209.
Ball, G.F. and J. Balthazart, 2008. Individual variation and the endocrine regulation of behaviour and physiology in birds: A cellular/molecular perspective. Phil. Trans. R. Soc. B: Biol. Sci., 363: 1699-1710.
Bergmuller, R. and M. Taborsky, 2010. Animal personality due to social niche specialisation. Trends Ecol. Evol., 25: 504-511.
Briffa, M., L.U. Sneddon and A.J. Wilson, 2015. Animal personality as a cause and consequence of contest behaviour. Biol. Lett., Vol. 11.
Turlejski, K., 1996. Evolutionary ancient roles of serotonin: Long-lasting regulation of activity and development. Acta Neurobiol. Exp., 56: 619-636.
Adayev, T., B. Ranasinghe and P. Banerjee, 2005. Transmembrane signaling in the brain by serotonin, a key regulator of physiology and emotion. Biosci. Rep., 25: 363-385.
Kiser, D., B. Steemers, I. Branchi and J.R. Homberg, 2012. The reciprocal interaction between serotonin and social behaviour. Neurosci. Biobehav. Rev., 36: 786-798.
Olivier, B., 2005. Serotonergic mechanisms in aggression. Novartis Found. Symp., 268: 171-183.
Carrillo, M., L.A. Ricci, G.A. Coppersmith and R.H. Melloni Jr., 2009. The effect of increased serotonergic neurotransmission on aggression: A critical meta-analytical review of preclinical studies. Psychopharmacology, 205: 349-368.
Lucki, I., 1998. The spectrum of behaviors influenced by serotonin. Biol. Psychiatry, 44: 151-162.
Reif, A. and K.P. Lesch, 2003. Toward a molecular architecture of personality. Behav. Brain Res., 139: 1-20.
Olivier, B., 2015. Serotonin: A never-ending story. Eur. J. Pharmacol., 753: 2-18.
Mann, J.J., D.A. Brent and V. Arango, 2001. The neurobiology and genetics of suicide and attempted suicide: A focus on the serotonergic system. Neuropsychopharmacology, 24: 467-477.
Takahashi, A., I.M. Quadros, R.M.M. de Almeida and K.A. Miczek, 2012. Behavioral and pharmacogenetics of aggressive behavior. Curr. Top. Behav. Neurosci., 12: 73-138.
Popova, N.K., N.N. Voitenko and L.N. Trut, 1975. Changes in the content of serotonin and 5-Hydroxyindoleacetic acid in the brain during selection of silver foxes according to behavior. Doklady Akademii Nauk SSSR, 223: 1498-1500.
Brown, G.L., M.H. Ebert, P.F. Goyer, D.C. Jimerson, W.J. Klein, W.E. Bunney and F.K. Goodwin, 1982. Aggression, suicide, and serotonin: Relationships to CSF amine metabolites. Am. J. Psychiat., 139: 741-746.
Stanley, B., A. Molcho, M. Stanley, R. Winchel, M.J. Gameroff, B. Parsons and J.J. Mann, 2000. Association of aggressive behavior with altered serotonergic function in patients who are not suicidal. Am. J. Psychiat., 157: 609-614.
Pavlov, K.A., D.A. Chistiakov and V.P. Chekhonin, 2012. Genetic determinants of aggression and impulsivity in humans. J. Applied Genet., 53: 61-82.
Westergaard, G.C., S.J. Suomi, T.J. Chavanne, L. Houser and A. Hurley et al., 2003. Physiological correlates of aggression and impulsivity in free-ranging female primates. Neuropsychopharmacol., 28: 1045-1055.
Mehlman, P.T., J.D. Higley, I. Faucher, A.A. Lilly and D.M. Taub et al., 1994. Low CSF 5-HIAA concentrations and severe aggression and impaired impulse control in nonhuman primates. Am. J. Psychiat., 151: 1485-1491.
Popova, N.K., V.S. Naumenko and I.Z. Plyusnina, 2007. Involvement of brain serotonin 5-HT1A receptors in genetic predisposition to aggressive behavior. Neurosci. Behav. Physiol., 37: 631-635.
Beis, D., K. Holzwarth, M. Flinders, M. Bader, M. Wohr and N. Alenina, 2015. Brain serotonin deficiency leads to social communication deficits in mice. Biol. Lett., Vol. 11.
Hanna, G.L., A. Yuwiler and J.K. Coates, 1995. Whole blood serotonin and disruptive behaviors in juvenile obsessive-compulsive disorder. J. Am. Acad. Child Adolescent Psychiatry, 34: 28-35.
Moffitt, T.E., G.L. Brammer, A. Caspi, J.P. Fawcett, M. Raleigh, A. Yuwiler and P. Silva, 1998. Whole blood serotonin relates to violence in an epidemiological study. Biol. Psychiatry, 43: 446-457.
Rosado, B., S. Garcia-Belenguer, J. Palacio, G. Chacon, A. Villegas and A.I. Alcalde, 2010. Serotonin transporter activity in platelets and canine aggression. Vet. J., 186: 104-105.
Cheng, H. and W.M. Muir, 2005. The effects of genetic selection for survivability and productivity on chicken physiological homeostasis. World Poult. Sci. J., 61: 383-397.
Cheng, H.W., S.D. Eicher, Y. Chen, P. Singleton and W.M. Muir, 2001. Effect of genetic selection for group productivity and longevity on immunological and hematological parameters of chickens. Poult. Sci., 80: 1079-1086.
Bolhuis, J.E., E.D. Ellen, C.G. van Reenen, J. de Groot and J. Ten Napel et al., 2009. Effects of genetic group selection against mortality on behavior and peripheral serotonin in domestic laying hens with trimmed and intact beaks. Physiol. Behav., 97: 470-475.
Novkovic, H.V., V. Rudan, N. Pivac, G. Nedic and D. Muck-Seler, 2009. Platelet serotonin concentration in children with attention-deficit/hyperactivity disorder. Neuropsychobiology, 59: 17-22.
McDonald, M.D., A. Gonzalez and K.A. Sloman, 2011. Higher levels of aggression are observed in socially dominant toadfish treated with the selective serotonin reuptake inhibitor, fluoxetine. Comp. Biochem. Physiol. C: Pharmacol. Toxicol. Endocrinol., 153: 107-112.
Lyte, M., 2011. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: Microbial endocrinology in the design and use of probiotics. Bioessays, 33: 574-581.
Dinan, T.G., C. Stanton and J.F. Cryan, 2013. Psychobiotics: A novel class of psychotropic. Biol. Psychiatry, 74: 720-726.
Bravo, J.A., P. Forsythe, M.V. Chew, E. Escarvage and H.M. Savignac et al., 2011. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci., 108: 16050-16055.
Neufeld, K.M., N. Kang, J. Bienenstock and J.A. Foster, 2011. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroent. Motil., 23: 119-255.
Bercik, P., E. Denou, J. Collins, W. Jackson and J. Lu et al., 2011. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology, 141: 599-609.
Popova, N.K., N.N. Kudriavtseva and S.D. Lubsanova, 1978. Genetic control of the tissue concentration of serotonin in mice. Genetika, 14: 1804-1808.
Lampugnani, M.G., W. Buczko, A. Ceci, A. Mennini and G. de Gaetano, 1986. Normal serotonin uptake by blood platelets and brain synaptosomes but selective impairment of platelet serotonin storage in mice with chediack-higashi syndrome. Life Sci., 38: 2193-2198.
Sarrias, M.J., E. Martinez, P. Celada, C. Udina, E. Alvarez and F. Artigas, 1991. Plasma free 5HT and platelet 5HT in depression: Case-control studies and the effect of antidepressant therapy. Adv. Exp. Med. Biol., 294: 653-658.
Forsythe, P., N. Sudo, T. Dinan, V.H. Taylor and J. Bienenstock, 2010. Mood and gut feelings. Brain Behav. Immun., 24: 9-16.
Dinan, T.G. and J.F. Cryan, 2012. Regulation of the stress response by the gut microbiota: Implications for psychoneuroendocrinology. Psychoneuroendocrino, 37: 1369-1378.
Ezenwa, V.O., N.M. Gerardo, D.W. Inouye, M. Medina and J.B. Xavier, 2012. Animal behavior and the microbiome. Science, 338: 198-199.
Matthews, D.M. and S.M. Jenks, 2013. Ingestion of Mycobacterium vaccae decreases anxiety-related behavior and improves learning in mice. Behav. Process., 96: 27-35.
Ohland, C.L., L. Kish, H. Bell, A. Thiesen, N. Hotte, E. Pankiv and K.L. Madsen, 2013. Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psychoneuroendocrino, 38: 1738-1747.
Hsiao, E.Y., S.W. McBride, S. Hsien, G. Sharon and E.R. Hyde et al., 2013. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 155: 1451-1463.
Zhang, Z.F. and I.H. Kim, 2014. Effects of multistrain probiotics on growth performance, apparent ileal nutrient digestibility, blood characteristics, cecal microbial shedding and excreta odor contents in broilers. Poult. Sci., 93: 364-370.
Cengiz, O., B.H. Koksal, O. Tatli, O. Sevim and U. Ahsan et al., 2015. Effect of dietary probiotic and high stocking density on the performance, carcass yield, gut microflora and stress indicators of broilers. Poult. Sci., 94: 2395-2403.
Liao, X.D., G. Ma, J. Cai, Y. Fu, X.Y. Yan, X.B. Wei and R.J. Zhang, 2015. Effects of Clostridium butyricum on growth performance, antioxidation and immune function of broilers. Poult. Sci., 94: 662-667.
Grimes, J.L., S. Rahimi, E. Oviedo, B.W. Sheldon and F.B.O. Santos, 2008. Effects of a direct-fed microbial (Primalac) on Turkey poult performance and susceptibility to oral Salmonella challenge. Poult. Sci., 87: 1464-1470.
Alexopoulos, C., I.E. Georgoulakis, A. Tzivara, S.K. Kritas, A. Siochu and S.C. Kyriakis, 2004. Field evaluation of the efficacy of a probiotic containing Bacillus licheniformis and Bacillus subtilis spores, on the health status and performance of sows and their litters. J Anim. Physiol. Anim. Nutr., 88: 381-392.
Davis, M.E., T. Parrott, D.C. Brown, B.Z. de Rodas, Z.B. Johnson, C.V. Maxwell and T. Rehberger, 2008. Effect of a Bacillus-based direct-fed microbial feed supplement on growth performance and pen cleaning characteristics of growing-finishing pigs. J. Anim. Sci., 86: 1459-1467.
Mohan, B., R. Kadirvel, M. Bhaskaran and A. Natarajan, 1995. Effect of probiotic supplementation on serum/yolk cholesterol and on egg shell thickness in layers. Br. Poult. Sci., 36: 799-803.
Yoruk, M.A., M. Gul, A. Hayirli and M. Macit, 2004. The effects of supplementation of humate and probiotic on egg production and quality parameters during the late laying period in hens. Poult. Sci., 83: 84-88.
Panda, A.K., S.S.R. Rao, M.V.L.N. Raju and S.S. Sharma, 2008. Effect of probiotic (Lactobacillus sporogenes) feeding on egg production and quality, yolk cholesterol and humoral immune response of White Leghorn layer breeders. J. Sci. Food Agric., 88: 43-47.
Lee, D.K., J.E. Park, M.J. Kim, J.G. Seo, J.H. Lee and N.J. Ha, 2015. Probiotic bacteria, B. longum and L. acidophilus inhibit infection by rotavirus in vitro and decrease the duration of diarrhea in pediatric patients. Clin. Res. Hepatol. Gastroenterol., 39: 237-244.
Lee, K.W., S.H. Lee, H.S. Lillehoj, G.X. Li and S.I. Jang et al., 2010. Effects of direct-fed microbials on growth performance, gut morphometry and immune characteristics in broiler chickens. Poult. Sci., 89: 203-216.
Sen, S., S.L. Ingale, Y.W. Kim, J.S. Kim and K.H. Kim et al., 2012. Effect of supplementation of Bacillus subtilis LS 1-2 to broiler diets on growth performance, nutrient retention, caecal microbiology and small intestinal morphology. Res. Vet. Sci., 93: 264-268.
Downloads
Published
Issue
Section
License
Copyright (c) 2018 The Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.