Immune Response of Laying Hens Exposed to 30 ppm Ammonia for 25 Weeks


Authors

  • H. Chen College of Animal Science and Technology, Agricultural University, 071001 Hebei, China
  • F.F. Yan Department of Animal Sciences, Purdue University, West Lafayette, 47907 IN, USA
  • J.Y. Hu Department of Animal Sciences, Purdue University, West Lafayette, 47907 IN, USA
  • Yanan Wu College of Animal Science and Technology, Nanjing Agricultural University, 210095 Jiangsu, China
  • C.M. Tucker Department of Agricultural and Biological Engineering, University of Illinois, 61820 IL, USA
  • A.R. Green Department of Agricultural and Biological Engineering, University of Illinois, 61820 IL, USA
  • H.W. Cheng USDA-ARS, Livestock Behavior Research Unit, 125 Russell street, West Lafayette, 47907 IN, USA

DOI:

https://doi.org/10.3923/ijps.2017.139.146

Keywords:

Ammonia, hen, heterophil/lymphocyte ratio, immunity, stress

Abstract

Background and Objective: Ammonia (NH3) is one of the most prominent aerial pollutants inside poultry barns, affecting chicken health and well-being based on its level and exposure duration. The aim of this study was to investigate the effect of 30 ppm NH3 on the immune response of laying hens. Methodology: Hy-Line W-36 hens at 18 weeks of age were randomly assigned to 4 hen cages and evenly distributed to two controlled environment chambers. Beginning at 25 weeks of age, one chamber was maintained continuously with fresh air (NH3 < 5 ppm; control group) and the other one was injected with NH3 and controlled at 30 ppm (NH3 group) for 25 weeks. At 50 weeks of age, plasma concentrations of total immunoglobulins (IgA, IgG and IgM), complement factors (C3 and C4), albumin (ALB), Alpha-1-acid glycoprotein (AGP) and cytokines including interleukin (IL)-1β, IL-6, interferon gamma (IFN-γ) and Tumor Necrosis Factor alpha (TNF-α) as well as mRNA expressions of IL-1β, IL-6 and TNF-α in the spleens were determined (n = 16). Results: Hens exposed to NH3 had a greater Heterophil/Lymphocyte (H/L) ratio (p<0.05) but lower plasma concentrations of IgM and C4 (p<0.05, respectively) than control hens. There were no differences in the concentrations of other measured parameters between NH3 exposed hens and control hens (p>0.05, respectively). Conclusion: These findings suggested that NH3 exposure at 30 ppm for 25 weeks increases stress status and suppresses immunity of laying hens as indicated by the changes of H/L ratio and plasma IgM and C4 concentrations.

References

Ritz, C.W., B.D. Fairchild and M.P. Lacy, 2004. Implications of ammonia production and emissions from commercial poultry facilities: A review. J. Appl. Poult. Res., 13: 684-692.

Jones, L., M.S. Nizam, B. Reynolds, S. Bareham and E.R.B. Oxley, 2013. Upwind impacts of ammonia from an intensive poultry unit. Environ. Pollut., 180: 221-228.

David, B., C. Mejdell, V. Michel, V. Lund and R.O. Moe, 2015. Air quality in alternative housing systems may have an impact on laying hen welfare. Part II-Ammonia. Animals, 5: 886-896.

Nimmermark, S., V. Lund, G. Gustafsson and W. Eduard, 2009. Ammonia, dust and bacteria in welfare-oriented systems for laying hens. Ann. Agric. Environ. Med., 16: 103-113.

Anderson, D.P., C.W. Beard and R.P. Hanson, 1964. The adverse effects of ammonia on chickens including resistance to infection with Newcastle disease virus. Avian Dis., 8: 369-379.

Liang, Y., H. Xin, E.F. Wheeler, R.S. Gates and H. Li et al., 2005. Ammonia emissions from U.S. laying hen houses in Iowa and Pennsylvania. Trans. ASAE., 48: 1927-1941.

Wei, F.X., X.F. Hu, B. Xu, M.H. Zhang, S.Y. Li, Q.Y. Sun and P. Lin, 2015. Ammonia concentration and relative humidity in poultry houses affect the immune response of broilers. Genet. Mol. Res., 14: 3160-3169.

Zhang, J., C. Li, X. Tang, Q. Lu, R. Sa and H. Zhang, 2015. High concentrations of atmospheric ammonia induce alterations in the hepatic proteome of broilers (Gallus gallus): An itraq-based quantitative proteomic analysis. PLoS ONE, Vol. 10.

Beker, A., S.L. Vanhooser, J.H. Swartzlander and R.G. Teeter, 2004. Atmospheric ammonia concentration effects on broiler growth and performance. J. Applied Poult. Res., 13: 5-9.

Miles, D.M., S.L. Branton and B.D. Lott, 2004. Atmospheric ammonia is detrimental to the performance of modern commercial broilers. Poult. Sci., 83: 1650-1654.

Xin, H., R.S. Gates, A.R. Green, F.M. Mitloehner, P.A. Moore Jr. and C.M. Wathes, 2011. Environmental impacts and sustainability of egg production systems. Poult. Sci., 90: 263-277.

Shepherd, T.A., Y. Zhao, H. Li, J.P. Stinn, M.D. Hayes and H. Xin, 2015. Environmental assessment of three egg production systems-Part II. Ammonia, greenhouse gas and particulate matter emissions. Poult. Sci., 94: 534-543.

Yi, B., L. Chen, R. Sa, R. Zhong, H. Xing and H. Zhang, 2016. Transcriptome profile analysis of breast muscle tissues from high or low levels of atmospheric ammonia exposed broilers (Gallus gallus). PLoS ONE, Vol. 11.

Caveny, D.D., C.L. Quarles and G.A. Greathouse, 1981. Atmospheric ammonia and broiler cockerel performance. Poult. Sci., 60: 513-516.

Wei, F.X., X.F. Hu, R.N. Sa, F.Z. Liu, S.Y. Li and Q.Y. Sun, 2014. Antioxidant capacity and meat quality of broilers exposed to different ambient humidity and ammonia concentrations. Genet. Mol. Res., 13: 3117-3127.

Wang, Z. and K.M.Y. Leung, 2015. Effects of unionised ammonia on tropical freshwater organisms: Implications on temperate-to-tropic extrapolation and water quality guidelines. Environ. Pollut., 205: 240-249.

Friedman, R.B., R.E. Anderson, S.M. Entine and S.B. Hirshberg, 1980. Effects of diseases on clinical laboratory tests. Clin. Chem., 26: 1D-476D.

O'Reilly, E.L. and P.D. Eckersall, 2014. Acute phase proteins: A review of their function, behaviour and measurement in chickens. World Poult. Sci. J., 70: 27-44.

Kuroda, N., K. Naruse, A. Shima, M. Nonaka, M. Sasaki and M. Nonaka, 2000. Molecular cloning and linkage analysis of complement C3 and C4 genes of the japanese medaka fish. Immunogenetics, 51: 117-128.

Gueguinou, N., C. Huin-Schohn, N. Ouzren-Zarhloul, S. Ghislin and J.P. Frippiat, 2014. Molecular cloning and expression analysis of Pleurodeles waltl complement component C3 under normal physiological conditions and environmental stresses. Dev. Comp. Immunol., 46: 180-185.

Gomes, A.V.S., W.M. Quinteiro-Filho, A. Ribeiro, V. Ferraz-de-Paula and M.L. Pinheiro et al., 2014. Overcrowding stress decreases macrophage activity and increases Salmonella enteritidis invasion in broiler chickens. Avian Pathol., 43: 82-90.

Mestecky, J., M.W. Russell and C.O. Elson, 1999. Intestinal IgA: Novel views on its function in the defence of the largest mucosal surface. Gut, 44: 2-5.

Suzuki, K., S.A. Ha, M. Tsuji and S. Fagarasan, 2007. Intestinal IgA synthesis: A primitive form of adaptive immunity that regulates microbial communities in the gut. Sem. Immunol., 19: 127-135.

Herold, M., H.P. Brezinschek, M. Gruschwitz, H. Dietrich and G. Wick, 1992. Investigation of ACTH responses of chickens with autoimmune disease. Gen. Comp. Endocrinol., 88: 188-198.

Sundick, R.S., N. Bagchi and T.R. Brown, 1996. The obese strain chicken as a model for human Hashimoto's thyroiditis. Exp. Clin. Endocrinol. Diabetes, 104: 4-6.

Fujii, J., T. Kurahashi, T. Konno, T. Homma and Y. Iuchi, 2015. Oxidative stress as a potential causal factor for autoimmune hemolytic anemia and systemic lupus erythematosus. World J. Nephrol., 4: 213-222.

Wiersinga, W.M., 2016. Clinical relevance of environmental factors in the pathogenesis of autoimmune thyroid disease. Endocrinol. Metab., 31: 213-222.

Osborne, L.C. and N. Abraham, 2010. Regulation of memory T cells by γc cytokines. Cytokine, 50: 105-113.

Boehm, U., T. Klamp, M. Groot and J.C. Howard, 1997. Cellular responses to interferon-γ. Ann. Rev. Immunol., 15: 749-795.

Mesquida, M., A. Leszczynska, V. Llorenc and A. Adan, 2014. Interleukin‐6 blockade in ocular inflammatory diseases. Clin. Exp. Immunol., 176: 301-309.

Yao, X., J. Huang, H. Zhong, N. Shen, R. Faggioni, M. Fung and Y. Yao, 2014. Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacol. Ther., 141: 125-139.

UEP., 2016. Animal husbandary guidelines for U.S. egg laying flocks. United Egg Producers. http://www.unitedegg.org/information/pdf/UEP-Animal-Welfare-Guidelines2016.pdf.

Wu, Y. , F. Yan, J. Hu, H. Chen, C.M. Tucker, A. Green and H.W. Cheng, 2016. The effect of chronic ammonia exposure on acute phase proteins, immunoglobulin and cytokines in laying hens. Poult. Sci., (In Press).

Olanrewaju, H.A., J.P. Thaxton, W.A. Dozier III, J. Purswell, S.D. Collier and S.L. Branton, 2008. Interactive effects of ammonia and light intensity on hematochemical variables in broiler chickens. Poult. Sci., 87: 1407-1414.

Romeo, R.D., 2010. Pubertal maturation and programming of hypothalamic-pituitary-adrenal reactivity. Front. Neuroendocrinol., 31: 232-240.

Millet, S., J. Bennett, K.A. Lee, M. Hau and K.C. Klasing, 2007. Quantifying and comparing constitutive immunity across avian species. Dev. Comp. Immunol., 31: 188-201.

Campbell, T.W., 1995. Avian Hematology and Cytology. 2nd Edn., Iowa State University Press, Ames, Iowa, USA., ISBN-13: 978-0813829708, Pages: 108.

Cheng, H.W., G. Dillworth, P. Singleton, Y. Chen and W.M. Muirt, 2001. Effects of group selection for productivity and longevity on blood concentrations of serotonin, catecholamines and corticosterone of laying hens. Poult. Sci., 80: 1278-1285.

Strong, R.A., P.Y. Hester, S.D. Eicher, J. Hu and H.W. Cheng, 2015. The effect of cooled perches on immunological parameters of caged white leghorn hens during the hot summer months. PLoS ONE, Vol. 10.

Livak, K.J. and T.D. Schmittgen, 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25: 402-408.

Deaton, J.W., F.N. Reece and B.D. Lott, 1984. Effect of atmospheric ammonia on pullets at point of lay. Poult. Sci., 63: 384-385.

Gross, W.B. and H.S. Siegel, 1983. Evaluation of the heterophil/lymphocyte ratio as a measure of stress in chickens. Avian Dis., 27: 972-979.

Davis, A.K., 2005. Effect of handling time and repeated sampling on avian white blood cell counts. J. Field Ornithol., 76: 334-338.

Lentfer, T.L., H. Pendl, S.G. Gebhardt-Henrich, E.K.F. Frohlich and E. Von Borell, 2015. H/L ratio as a measurement of stress in laying hens-methodology and reliability. Br. Poult. Sci., 56: 157-163.

Gudev, D., S. Popova-Ralcheva, I. Yanchev, P. Moneva, E. Petkov and M. Ignatova, 2011. Effect of betaine on egg performance and some blood constituents in laying hens reared indoor under natural summer temperatures and varying levels of air ammonia. Bulgarian J. Agric. Sci., 17: 859-866.

McFarlane, J.M. and S.E. Curtis, 1989. Multiple concurrent stressors in chicks. 3. Effects on plasma corticosterone and the heterophil: Lymphocyte ratio. Poult. Sci., 68: 522-527.

Eckersall, P.D. and R. Bell, 2010. Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. Vet. J., 185: 23-27.

Faixova, Z., S. Faix, R. Borutova and L. Leng, 2007. Effect of different doses of deoxynivalenol on metabolism in broiler chickens. Bull. Vet. Inst. Pulawy, 51: 421-424.

Ceciliani, F., V. Pocacqua, A. Miranda-Ribera, V. Bronzo, C. Lecchi and P. Sartorelli, 2007. α1-ACID glycoprotein modulates apoptosis in bovine monocytes. Vet. Immunol. Immunopathol., 116: 145-152.

Lecchi, C., A. Scarafoni, V. Bronzo, P.A. Martino, A. Cavallini, P. Sartorelli and F. Ceciliani, 2013. α1-Acid glycoprotein modulates phagocytosis and killing of Escherichia coli by bovine polymorphonuclear leucocytes and monocytes. Vet. J., 196: 47-51.

Miranda-Ribera, A., C. Lecchi, V. Bronzo, L. Scaccabarozzi, P. Sartorelli, F. Franciosi and F. Ceciliani, 2010. Down-regulatory effect of alpha1-acid glycoprotein on bovine neutrophil degranulation. Comp. Immunol. Microbiol. Infect. Dis., 33: 291-306.

Salamano, G., E. Mellia, M. Tarantola, M.S. Gennero, L. Doglione and A. Schiavone, 2010. Acute phase proteins and heterophil: Lymphocyte ratio in laying hens in different housing systems. Vet. Record, 167: 749-751.

Shakeri, M., I. Zulkifli, A.F. Soleimani, E.L. O'Reilly and P.D. Eckersall et al., 2014. Response to dietary supplementation of L-glutamine and L-glutamate in broiler chickens reared at different stocking densities under hot, humid tropical conditions. Poult. Sci., 93: 2700-2708.

Tuyttens, F., M. Heyndrickx, M. de Boeck, A. Moreels and A. van Nuffel et al., 2008. Broiler chicken health, welfare and fluctuating asymmetry in organic versus conventional production systems. Livest. Sci., 113: 123-132.

Senanayake, S.S.H.M.M.L., J.G.S. Ranasinghe, R. Waduge, K. Nizanantha and P.A.B.D. Alexander, 2015. Changes in the serum enzyme levels and liver lesions of broiler birds reared under different management conditions. Trop. Agric. Res., 26: 584-595.

Goldsby, R.A., T.J. Kindt, B.A. Osborne and J. Kuby, 2003. Immunology. 5th Edn., W.H. Freeman and Co., New York, USA.

Wang, Y.M., Q.P. Meng, Y.M. Guo, Y.Z. Wang, Z. Wang, Z.L. Yao and T.Z. Shan, 2010. Effect of atmospheric ammonia on growth performance and immunological response of broiler chickens. J. Anim. Vet. Adv., 9: 2802-2806.

Binder, C.J., 2010. Natural igm antibodies against oxidation-specific epitopes. J. Clin. Immunol., 30: 56-60.

Seifert, M. and R. Kuppers, 2016. Human memory B cells. Leukemia, 30: 2283-2292.

Collard, C.D., A. Vakeva, M.A. Morrissey, A. Agah and S.A. Rollins et al., 2000. Complement activation after oxidative stress: Role of the lectin complement pathway. Am. J. Pathol., 156: 1549-1556.

Dugum, M., M. Askar, R.K. Pai, L. Yerian and A. Bennett et al., 2014. Re-examination of sinusoidal deposition of complement 4d in liver allografts: Experience from a single institution. Int. J. Clin. Exp. Pathol., 7: 784-791.

Dodds, M.W. and S.K.A. Law, 1998. The phylogeny and evolution of the thioester bond‐containing proteins C3, C4 and α2-macroglobulin. Immunol. Rev., 166: 15-26.

Klasing, K.C. and B.J. Johnstone, 1991. Monokines in growth and development. Poult. Sci., 70: 1781-1789.

Tsigos, C., D.A. Papanicolaou, R. Defensor, C.S. Mitsiadis, I. Kyrou and G.P. Chrousos, 1997. Dose effects of recombinant human lnterleukin-6 on pituitary hormone secretion and energy expenditure. Neuroendocrinology, 66: 54-62.

Fang, H., W. Jiang, J. Cheng, Y. Lu, A. Liu, L. Kan and U. Dahmen, 2015. Balancing innate immunity and inflammatory state via modulation of neutrophil function: A novel strategy to fight sepsis. J. Immunol. Res., Vol. 2015.

Bamias, G. and F. Cominelli, 2016. Cytokines and intestinal inflammation. Curr. Opin. Gastroenterol., 32: 437-442.

Toivanen, P., A. Toivanen, T.J. Linna and R.A. Good, 1972. Ontogeny of bursal function in chicken II. Postembryonic stem cell for humoral immunity. J. Immunol., 109: 1071-1080.

Koppenol, A., E. Delezie, H.K. Parmentier, J. Buyse and N. Everaert, 2015. Limited evidence for trans-generational effects of maternal dietary supplementation with ω-3 fatty acids on immunity in broiler chickens. Vet. J., 203: 244-249.

Rasouli, J., R. Lekhraj, M. Ozbalik, P. Lalezari and D. Casper, 2011. Brain-spleen inflammatory coupling: A literature review. Einstein J. Biol. Med., 27: 74-77.

Timmer, B., W. Olthuis and A. van den Berg, 2005. Ammonia sensors and their applications-a review. Sens. Actuat. B: Chem., 107: 666-677.

Downloads

Published

2017-03-15

Issue

Section

Research Article

How to Cite

Chen, H., Yan, F., Hu, J., Wu, Y., Tucker, C., Green, A., & Cheng , H. (2017). Immune Response of Laying Hens Exposed to 30 ppm Ammonia for 25 Weeks. International Journal of Poultry Science, 16(4), 139–146. https://doi.org/10.3923/ijps.2017.139.146