Genetic Diversity of Prolactin Gene in Two Strains of Japanese Quail (Coturnix coturnix japonica) in Nigeria
DOI:
https://doi.org/10.3923/ijps.2016.349.357Keywords:
Conservation, diversity, Japanese quail, prolactin, selectionAbstract
Background: Among poultry species, quail is the easiest to produce, yet no proper breeding strategy exist in Nigeria. However, data on production characteristics and genetic diversity among quail populations in Nigeria is scant. Objective: This study was carried out to investigate the genetic diversity, relationship and population structure in two Japanese quail strains (Albino and wild) using a restricted fragment length polymorphism marker in the prolactin (PRL) gene. Methodology: Fifteen quail from each strain were sampled in 5 geographical regions in Nigeria (Kano, Jos, Umudike, Port Harcourt and Ibadan). Polymerase chain reaction (PCR) and electrophoresis was used to characterize a 24 base pair (bp) insertion/deletion in a 358 bp PCR product. Results: The genetic variability using allele frequency, molecular variance, deviation from Hardy-Weinberg (H-W) equilibrium using the phylogenies package (PHYLIP) and analysis of molecular variance (AMOVA) were obtained. The frequency of insertion (A allele) was similar for both strains in the Ibadan, Jos and Umudike populations, however, the allele frequency was 0.73 and 0.50 for the Albino and Wild strains, respectively in Kano 0.57 and 0.70, respectively for the Albino and Wild strains in Port Harcourt. Whereas, there were no deviations from HWE for both strains, in Ibadan, Jos and Umudike, the populations in Kano and Port Harcourt deviated from H-W equilibrium. The AMOVA analysis showed 4.04% population difference, 1.17% variation among individuals and 94.25% within individuals. Conclusion: Prolactin is an important gene for reproduction and it’s segregation could be assessed for reproductive capacity. The delineation of genetic diversity in these populations allows for innovative selective breeding and conservation strategies to be developed.
References
Ayasan, T. and F. Okan, 2001. The effect of A diet with different Probiotic (Protexin) levels on the fattening performance and carcass characteristics of Japanese quails. Proceedings of the 15th European Symposium on the Quality of Poultry Meat, September 9-12, 2001, Kusadasi, Turkey, pp: 169-174.
Sharp, P.J., M.C. Macnamee, R.J. Sterling, R.W. Lea and H.C. Pedersen, 1988. Relationships between prolactin, LH and broody behaviour in bantam hens. J. Endocrinol., 118: 279-286.
Shimada, K., H. Ishida, K. Sato, H. Seo and N. Matsui, 1991. Expression of prolactin gene in incubating hens. J. Reprod. Fertil., 91: 147-154.
Jiang, R.S., G.Y. Xu, X.Q. Zhang and N. Yang, 2005. Association of polymorphisms for prolactin and prolactin receptor genes with broody traits in chickens. Poult. Sci., 84: 839-845.
Lotfi, E., S. Zerehdaran, M. Ahani and E. Dehnavi, 2013. Genetic polymorphism in prolactin gene and its association with reproductive traits in Japanese quail (Coturnix japonica). Poult. Sci. J., 1: 79-85.
Sockman, K.W., H. Schwabl and P.J. Sharp, 2000. The role of prolactin in the regulation of clutch size and onset of incubation behavior in the American kestrel. Hormones Behav., 38: 168-176.
Reddy, G.J., C.G. David and S.S. Raju, 2006. Chemical control of prolactin secretion and it's effects on pause days, egg production and steroid hormone concentration in girirani birds. J. Poult. Sci., 5: 685-692.
Kansaku, N., G. Hiyama, T. Sasanami and D. Zadworny, 2008. Prolactin and growth hormone in birds: Protein structure, gene structure and genetic variation. J. Poult. Sci., 45: 1-6.
Cui, J.X., H.L. Du, Y. Liang, X.M. Deng, N. Li and X.Q. Zhang, 2006. Association of polymorphisms in the promoter region of chicken prolactin with egg production. Poult. Sci., 85: 26-31.
Bucky, 2015. Morphologica and biochemical characteristics of Japanese quail (Coturnix coturnix japonica). Masters Thesis, Department of Animal Science, University of Ibadan, Nigeria.
Amirinia, C., H. Emrani, M.A.R. Arbabe, R.V. Torshizi and A.N. Javaremi, 2007. Evaluation of eight microsatellite loci polymorphism in four Japanese quail (Coturnix japonica) strain in Iran. Pak. J. Biol. Sci., 10: 1195-1199.
Singh, S.P., A. Gutierrez, A. Molina, C. Urrea and P. Gepts, 1991. Genetic diversity in cultivated common bean: II. Marker-Based analysis of morphological and agronomic traits. Crop Sci., 31: 23-29.
Liu, K. and S.V. Muse, 2005. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics, 21: 2128-2129.
Yeh, F.C., R.C. Yang, T.B.J. Boyle, Z.H. Ye and J.X. Mao, 1997. POPGENE, the User-Friendly Shareware for Population Genetic Analysis. Molecular Biology and Biotechnology Center, Alberta.
Rousset, F., 2008. GENEPOP'007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour., 8: 103-106.
Nei, M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89: 583-590.
Excoffier, L., G. Laval and S. Schneider, 2005. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinform. Online, 1: 47-50.
Felsentein, J., 2009. PHYLIP (Phylogeny Inference Package), Version 3.69. University of Washington, Seattle, WA.
Saitou, N. and M. Nei, 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4: 406-425.
Paczos-Grzeda, E., M. Chrzastek, S. Okon, A. Gradzielewska and D. Miazga, 2009. Zastosowanie markerow ISSR do analizy wewnatrzgatunkowego podobienstwa genetycznego Avena sterilis L. Biuletyn Instytutu Hodowli i Aklimatyzacji Roslin, 252: 215-223.
Botstein, D., R.L. White, M. Skolnick and R.W. Davis, 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet., 32: 314-331.
Kayang, B.B., I. Youssao, E. Inoue, A. Naazie, H. Abe, S. Ito and M. Inoue-Murayama, 2010. Genetic diversity of helmeted guineafowl (Numida meleagris) based on microsatellite analysis. J. Poult. Sci., 47: 120-124.
Zhou, D., J. Xue, J.C. Lai, N.J. Schork, K.P. White and G.G. Haddad, 2008. Mechanisms underlying hypoxia tolerance in Drosophila melanogaster: Hairy as a metabolic switch. PLoS Genet., Vol. 4.
Kaya, M. and M.A. Yildiz, 2008. Genetic diversity among Turkish native chickens, denizli and gerze, estimated by microsatellite markers. Biochem. Genet., 46: 480-491.
Davila, S.G., M.G. Gil, P. Resino-Talavan and J.L. Campo, 2009. Evaluation of diversity between different Spanish chicken breeds, a tester line and a White Leghorn population based on microsatellite markers. Poult. Sci., 88: 2518-2525.
Yousefi, S., Z. Raoufi, Z. Rasouli and S. Zerehdaran, 2012. Investigation of prolactin gene polymorphism in Japanese quail. Anim. Sci. Biotechnol., 45: 289-292.
Emamgholi-Begli, H., S. Zerehdaran, S. Hassani, M.A. Abbasi and A.K. Ahmadi, 2010. Polymorphism in prolactin and PEPCK-C genes and its association with economic traits in native fowl of Yazd province. Iranian J. Biotechnol., 8: 172-177.
Alipanah, M., K. Shojaian and H.K. Bandani, 2011. The polymorphism of Prolactin gene in native chicken Zabol region. J. Anim. Vet. Adv., 10: 619-621.
Ya-Bo, Y., W. Jin-Yu, D.M. Mekki, T. Qing-Ping and L. Hui-Fang et al., 2006. Evaluation of genetic diversity and genetic distance between twelve Chinese indigenous chicken breeds based on microsatellite markers. Int. J. Poult. Sci., 5: 550-556.
Li, H.F., W.Q. Zhu, K.W. Chen, T.J. Zhang and W.T. Song, 2009. Association of polymorphisms in the intron 1 of duck prolactin with egg performance. Turk. J. Vet. Anim. Sci., 33: 193-197.
Rashidi, H., G. Rahimi-Mianji, A. Farhadi and M. Gholizadeh, 2012. Association of prolactin and prolactin receptor gene polymorphisms with economic traits in breeder hens of indigenous chickens of Mazandaran province. Iran. J. Biotechnol., 10: 129-135.
Granevitze, Z., J. Hillel, G.H. Chen, N.T.K. Cuc, M. Feldman, M. Eding and S. Weigend, 2007. Genetic diversity within chicken populations from different continents and management histories. Anim. Genet., 38: 576-583.
Aminafshar, M., C. Amirinia and R.V. Torshizi, 2008. Genetic diversity in buffalo population of guilan using microsatellite markers. J. Anim. Vet. Adv., 7: 1499-1502.
Takezaki, N. and M. Nei, 1996. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics, 144: 389-399.
Handley, K., A. Szwelnik, D. Ujma, L. Lawrence, J. Millar and M. Price, 2007. When less is more: Students' experiences of assessment feedback. Proceedings of the 3rd Annual Conference Higher Education Academy, July 3-5, 2007, Harrogate International Centre, Harrogate, England.
Simianer, H., 2002. Molecular genetics differentiation verschiedener rotvieh population. Schriftenreihe des Bundesministeriums fur Verbraucherschutz, Ernahrung und Landwirtschaft, Heft 493, Land-wirtschaftsverlag GmbH. Munster-Hiltrup, Germany.
Wright, S., 1949. The genetical structure of populations. Ann. Eugenics, 15: 323-354.
Downloads
Published
Issue
Section
License
Copyright (c) 2016 The Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.