Heat Stress and Gut Microbiota: Effects on Poultry Productivity
DOI:
https://doi.org/10.3923/ijps.2020.294.302Keywords:
Gut health, gut microbiota, heat stress, immune system, poultry health, poultry productivityAbstract
The gut microbiota has been extensively examined because it plays pivotal roles in poultry health, growth and development. In poultry flocks, gut microbiota and host health and productivity are interwoven and influenced by factors including host derived, environmental and nutritional factors, which consequently influence the growth and performance of these birds. The responsiveness of chickens’ gut microbes during stress conditions such as heat stress that is commonly encountered during production is of imminent concern because healthy maintenance of the host-gut-microbiota relationship will result in improved bird growth and productive performance. Previous studies have established the link between gut microbiota alterations and immune system dysfunction in poultry birds, which is primarily initiated by stressors. However, shifts in the gut microbiota could also be linked to several diseases that negatively affect the immune system. The goal of this mini review was to focus on understanding the impact of heat stress on the gut microbiota and how this affects the health of the birds. We also suggest possible ways to ameliorate stress in poultry for improved productivity. Good knowledge of these salient points would help to develop new approaches to provide a better environment and feeding conditions for poultry birds, as strategies toward achieving improved poultry production.
References
Xu, Y., X. Lai, Z. Li, X. Zhang and Q. Luo, 2018. Effect of chronic heat stress on some physiological and immunological parameters in different breed of broilers. Poult. Sci., 97: 4073-4082.
Kapetanov, M., M. Pajić, D. Ljubojević and M. Pelić, 2015. Heat stress in poultry industry. Arch. Vet. Med., 8: 87-101.
Fouad, A.M., W. Chen, D. Ruan, S. Wang, W.G. Xia and C.T. Zheng, 2016. Impact of heat stress on meat, egg quality, immunity and fertility in poultry and nutritional factors that overcome these effects: A review. Int. J. Poult. Sci., 15: 81-95.
Ratriyanto, A. and R. Mosenthin, 2018. Osmoregulatory function of betaine in alleviating heat stress in poultry. J. Anim. Physiol. Anim. Nutr., 102: 1634-1650.
Mignon-Grasteau, S., U. Moreri, A. Narcy, X. Rousseau, T.B. Rodenburg, M. Tixier-Boichard and T. Zerjal 2015. Robustness to chronic heat stress in laying hens: a meta-analysis. Poult. Sci., 94: 586-600.
Ibtisham, F., A. Nawab, Y. Niu, Z. Wang, J. Wu, M. Xiao and L. An, 2019. The effect of ginger powder and Chinese herbal medicine on production performance, serum metabolites and antioxidant status of laying hens under heat-stress condition. J. Therm. Biol., 81: 20-24.
Mack, L.A., J.N. Felver-Gant, R.L. Dennis and H.W. Cheng, 2013. Genetic variations alter production and behavioral responses following heat stress in 2 strains of laying hens. Poult. Sci., 92: 285-294.
Sahin, N., A. Hayirli, C. Orhan, M. Tuzcu, J.R. Komorowski and K. Sahin 2018. Effects of the supplemental chromium form on performance and metabolic profile in laying hens exposed to heat stress. Poult. Sci., 97: 1298-1305.
Lara, L.J. and M.H. Rostagno, 2013. Impact of heat stress on poultry production. Animal, 3: 356-369.
Nawab, A., F. Ibtisham, G. Li, B. Kieser and J. Wu et al., 2018. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. J. Therm. Biol., 78: 131-139.
Akbarian, A., J. Michiels, J. Degroote, M. Majdeddin, A. Golian and S. de Smet, 2016. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechnol., Vol. 7.
Gürber, S., L. Baumeler, A. Grob, D. Surbek and W. Stadlmayr, 2017. Antenatal depressive symptoms and subjective birth experience in association with postpartum depressive symptoms and acute stress reaction in mothers and fathers: A longitudinal path analysis. Eur. J. Obstet. Gynecol. Reprod. Biol., 215: 68-74.
Borda-Molina, D., J. Seifert and A. Camarinha-Silva, 2018. Current perspectives of the chicken gastrointestinal tract and its microbiome. Comput. Struct. Biotechnol. J., 16: 131-139.
Wang, X.J., J.H. Feng, M.H. Zhang, X.M. Li, D.D. Ma and S.S. Chang 2018. Effects of high ambient temperature on the community structure and composition of ileal microbiome of broilers. Poult. Sci., 97: 2153-2158.
Burkholder, K.M., K.L. Thompson, M.E. Einstein, T.J. Applegate and J.A. Patterson, 2008. Influence of stressors on normal intestinal microbiota, intestinal morphology and susceptibility to Salmonella enteritidis colonization in broilers. Poult. Sci., 87: 1734-1741.
Song, J., K. Xiao, Y.L. Ke, L.F. Jiao and C.H. Hu et al., 2014. Effect of a probiotic mixture on intestinal microflora, morphology and barrier integrity of broilers subjected to heat stress. Poult. Sci., 93: 581-588.
Kammon, A., S. Alzentani, O. Tarhuni and A. Asheg, 2019. Effect of some organic acids on body weight, immunity and cecal bacterial count of chicken during heat stress. Int. J. Poult. Sci., 18: 293-300.
He, J., Y. He, D. Pan, J. Cao, Y. Sun and X. Zeng, 2019. Associations of gut microbiota with heat stress-induced changes of growth, fat deposition, intestinal morphology, and antioxidant capacity in ducks. Front. Microbiol.
Cryan, J.F. and T.G. Dinan, 2012. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci., 13: 701-712.
Dayou, S., B. Lin, Q. Qian, Z. Shanshan and Y. Meimei et al., 2019. Impact of gut microbiota structure in heat-stressed broilers. Poult. Sci., 98: 2405-2413.
Fisinin, V.I. and A.S. Kavtarashvili, 2015. Heat stress in poultry. II. methods and techniques for prevention and alleviation. Agric. Biol., 50: 431-443.
Lin, H., H.C. Jiao, J. Buyse and E. Decuypere, 2006. Strategies for preventing heat stress in poultry. World Poult. Sci. J., 62: 71-86.
Daghir, N.J., 2009. Nutritional strategies to reduce heat stress in broilers and broiler breeders. Lohmann Inform., 44: 6-15.
Geuking, M.B., Y. Köller, S. Rupp and K.D. McCoy, 2014. The interplay between the gut microbiota and the immune system. Gut Microbes, 5: 411-418.
Celi, P., A.J. Cowieson, F. Fru-Nji, R.E. Steinert, A.M. Kluenter and V. Verlhac, 2017. Gastrointestinal functionality in animal nutrition and health: New opportunities for sustainable animal production. Anim. Feed Sci. Technol., 234: 88-100.
Shang, Y., S. Kumar, B. Oakley and W.K. Kim, 2018. Chicken gut microbiota: Importance and detection technology. Front. Vet. Sci., Vol. 5.
Pourabedin, M. and X. Zhao, 2015. Prebiotics and gut microbiota in chickens. FEMS Microbiol. Lett., Vol. 362.
Yang, Y., P.A. Iji and M. Choct, 2009. Dietary modulation of gut microflora in broiler chickens: A review of the role of six kinds of alternatives to in-feed antibiotics. World's Poult. Sci. J., 65: 97-114.
Dąbrowska, K. and W. Witkiewicz, 2016. Correlations of host genetics and gut microbiome composition. Front. Microbiol.
Clavijo, V. and M.J.V. Flórez, 2018. The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poult. Sci., 97: 1006-1021.
Karl, J.P., A.M. Hatch, S.M. Arcidiacono, S.C. Pearce, I.G. Pantoja-Feliciano, L.A. Doherty and J.W. Soares, 2018. Effects of psychological, environmental and physical stressors on the gut microbiota. Front. Microbiol.
Kogut, M.H., 2013. The gut microbiota and host innate immunity: Regulators of host metabolism and metabolic diseases in poultry. J. Applied Poult. Res., 22: 637-646.
Cisek, A.A. and M. Binek, 2014. Chicken intestinal microbiota function with a special emphasis on the role of probiotic bacteria. Polish J. Vet. Sci., 17: 385-394.
Foster, J.A., L. Rinaman and J.F. Cryancd, 2017. Stress and the gut-brain axis: Regulation by the microbiome. Neurobiol. Stress, 7: 124-136.
Wouw, M.v.d., J.M. Lyte, M. Boehme, M. Sichetti and G. Moloney et al., 2020. The role of the microbiota in acute stress-induced myeloid immune cell trafficking. Brain Behav. Immun., 84: 209-217.
Feng, Q., W.D. Chen and Y.D. Wang 2018. Gut microbiota: An integral moderator in health and disease. Front. Microbiol.
Shreiner, A., J. Kao and V. Young, 2015. The gut microbiome in health and in disease. Curr. Opin. Gastroenterol., 31: 69-75.
Wiele, T.V.d., J.T.V. Praet, M. Marzorati, M.B. Drennan and D. Elewaut, 2016. How the microbiota shapes rheumatic diseases. Nat. Rev. Rheumatology, 12: 398-411.
Maki, J.J., C.L. Klima, M.J. Sylte and T. Looft, 2019. The microbial pecking order: utilization of intestinal microbiota for poultry health. Microorganisms, Vol. 7, No. 10.
Carrasco, J.M.D., N.A. Casanova and M.E.F. Miyakawa, 2019. Microbiota, gut health and chicken productivity: What Is the connection? Microorganisms, Vol. 7, No. 10.
Schokker, D., A.J.M. Jansman, G. Veninga, N.d. Bruin and S.A. Vastenhouw, 2017. Perturbation of microbiota in one-day old broiler chickens with antibiotic for 24 hours negatively affects intestinal immune development. BMC Genomics, Vol. 18.
Song, Z.H., K. Cheng, X.C. Zheng, H. Ahmad, L.L. Zhang and T. Wang, 2018. Effects of dietary supplementation with enzymatically treated Artemisia annua on growth performance, intestinal morphology, digestive enzyme activities, immunity, and antioxidant capacity of heat-stressed broilers. Poult. Sci., 97: 430-437.
Zhang, M., i. Sun, Y. Wu, Y. Yang, P. Tso and Z. Wu, 2017. Interactions between intestinal microbiota and host immune response in inflammatory bowel disease. Front. Immunol.
Awad, E.A., Z. Idrus, A.S. Farjam, A.U. Bello and M.F. Jahromi, 2018. Growth performance, duodenal morphology and the caecal microbial population in female broiler chickens fed glycine-fortified low protein diets under heat stress conditions. Br. Poult. Sci., 59: 340-348.
Varasteh, S., S. Braber, P. Akbari, J. Garssen and J. Fink-Gremmels, 2015. Differences in susceptibility to heat stress along the chicken intestine and the protective effects of galacto-oligosaccharides. PloS One, Vol. 10.
Pearce, S.C., V. Mani, R.L. Boddicker, J.S. Johnson and T.E. Weber et al., 2013. Heat stress reduces intestinal barrier integrity and favors intestinal glucose transport in growing pigs. PLoS ONE.
Dokladny, K., M.N. Zuhl and P.L. Moseley, 2016. Intestinal epithelial barrier function and tight junction proteins with heat and exercise. J. Applied Physiol., 120: 692-701.
Liu, Z., X. Sun, J. Tang, Y. Tang and H. Tong et al., 2011. Intestinal inflammation and tissue injury in response to heat stress and cooling treatment in mice. Mol. Med. Rep., 4: 437-443.
Mishra, B. and R. Jha, 2019. Oxidative stress in the poultry gut: Potential challenges and interventions. Front. Vet. Sci., Vol. 6.
Galley, J.D. and M.T. Bailey, 2014. Impact of stressor exposure on the interplay between commensal microbiota and host inflammation. Gut Microbes, 5: 390-396.
Goor, A.V., K.J. Bolek, C.M. Ashwell, M.E. Persia, M.F. Rothschild, C.J. Schmidt and S.J. Lamont, 2015. Identification of quantitative trait loci for body temperature, body weight, breast yield, and digestibility in an advanced intercross line of chickens under heat stress. Genet. Sel. Evol., Vol. 47, No. 96.
Sugiharto, S., T. Yudiarti, I. Isroli, E. Widiastuti and E. Kusumanti, 2017. Dietary supplementation of probiotics in poultry exposed to heat stress. Ann. Anim. Sci., 17: 591-604.
Li, W., J. Liu, H. Tan, C. Yang and L. Ren et al., 2018. Genetic effects on the gut microbiota assemblages of hybrid fish from parents with different feeding habits. Front. Microbiol.
Kemis, J.H., V. Linke, K.L. Barrett, F.J. Boehm and L.L. Traeger et al., 2019. Genetic determinants of gut microbiota composition and bile acid profiles in mice. PLoS Genet.
Sharma, M., Y. Li, M.L. Stoll and T.O. Tollefsbol, 2020. The epigenetic connection between the gut microbiome in obesity and diabetes. Front. Genet.
Fan, P., B. Bian, L. Teng, C. D. Nelson, J. Driver, M.A. Elzo and K.C. Jeong, 2020. Host genetic effects upon the early gut microbiota in a bovine model with graduated spectrum of genetic variation. ISME J., 14: 302-317.
Org, E., B.W. Parks, J.W.J. Joo, B. Emert and W. Schwartzman et al., 2015. Genetic and environmental control of host-gut microbiota interactions. Genome Res., 25: 1558-1569.
Goodrich, J.K., E.R. Davenport, A.G. Clark and R.E. Ley, 2017. The relationship between the human genome and microbiome comes into view. Annu. Rev. Genet., 51: 413-433.
Allen, J. and C.L. Sears, 2019. Impact of the gut microbiome on the genome and epigenome of colon epithelial cells: contributions to colorectal cancer development. Genome Med., Vol. 11, No. 11.
Kumar, A., B. Roy, S. Ganguly, P.K. Praveen, S. Shekhar and N. Dalai, 2014. Supplementation of Vitamin C for health promotion and combating heat stress in poultry. Int. J. Bio-Pharma Res., 3: 259-261.
Pawar, S.S., S. Basavaraj, L.V. Dhansing, K.N. Pandurang and K.A. Sahebrao et al., 2016. Assessing and mitigating the impact of heat stress in poultry. Adv. Anim. Vet. Sci., 4: 332-341.
Attia, Y.A., M.A. Al-Harthi and A.S. Elnaggar, 2017. Productive, physiological and immunological responses of two broiler strains fed different dietary regimens and exposed to heat stress. Italian J. Anim. Sci., 17: 686-697.
Ghazalah, A.A., M.O. Abd-Elsamee and A.M. Ali, 2008. Influence of dietary energy and poultry fat on the response of broiler chicks to heat therm. Int. J. Poult. Sci., 7: 355-359.
Kumari, K.N.R. and D.N. Nath, 2018. Ameliorative measures to counter heat stress in poultry. World's Poult. Sci. J., 74: 117-130.
Armstrong, L.E., E.C. Lee and E.M. Armstrong, 2018. Interactions of gut microbiota, endotoxemia, immune function, and diet in exertional heatstroke. J. Sports Med.
Sahin, K., N. Sahin, O. Kucuk, A. Hayirli and A.S. Prasad, 2009. Role of dietary zinc in heat-stressed poultry: A review. Poult. Sci., 88: 2176-2183.
Das, S., T.K. Palai, S.R. Mishra, D. Das and B. Jena, 2011. Nutrition in relation to diseases and heat stress in poultry. Vet World., 4: 429-432.
Ma, N. and X. Ma, 2019. Dietary amino acids and the gut‐microbiome‐immune axis: physiological metabolism and therapeutic prospects. Compr. Rev. Food Sci. Food Saf., 18: 221-242.
Abdulkarimi, R., M.H. Shahir and M. Daneshyar, 2017. Effects of dietary glutamine and arginine supplementation on performance, intestinal morphology and ascites mortality in broiler chickens reared under cold environment. Nonruminant Nutr. Feed Process., 32: 110-117.
Apajalahti, J. and Vienola, K. 2016. Interaction between chicken intestinal microbiota and protein digestion. Anim. Feed Sci. Technol., 221: 323-330.
Zhang, B., Z. Lv, Z. Li, W. Wang, G. Li and Y. Guo, 2018. Dietary l-arginine supplementation alleviates the intestinal injury and modulates the gut microbiota in broiler chickens challenged by Clostridium perfringens. Front. Microbiol.
Bortoluzzi, C., S.J. Rochell and T.J. Applegate, 2018. Threonine, arginine, and glutamine: Influences on intestinal physiology, immunology, and microbiology in broilers. Poult. Sci., 97: 937-945.
Costa, K.A., A.D.N. Soares, S.P. Wanner, R.d.G.C.d. Santos and S.O.A. Fernandes et al., 2014. L-arginine supplementation prevents increases in intestinal permeability and bacterial translocation in male swiss mice subjected to physical exercise under environmental heat stress. J. Nutr., 144: 218-223.
Lan, P.T.N., M. Sakamoto and Y. Benno, 2004. Effects of two probiotic Lactobacillus strains on jejunal and cecal microbiota of broiler chicken under acute heat stress condition as revealed by molecular analysis of 16S rRNA genes. Microbiol. Immunol., 48: 917-929.
Tuohy, K.M., H.M. Probert, C.W. Smejkal and G.R. Gibson, 2003. Using probiotics and prebiotics to improve gut health. Drug Discovery Today, 8: 692-700.
Mohammed, A.A., S. Jiang, J.A. Jacobs and H.W. Cheng, 2019. Effect of a synbiotic supplement on cecal microbial ecology, antioxidant status, and immune response of broiler chickens reared under heat stress. Poult. Sci., 98: 4408-4415.
Tillman, G.E., G.J. Haas, M.G. Wise, B. Oakley, M.A. Smith and G.R. Siragusa, 2011. Chicken intestine microbiota following the administration of lupulone, a hop-based antimicrobial. FEMS Microbiol. Ecol., 77: 395-403.
Baxter, M,F.A., J.D. Latorre, S. Dridi, R. Merino-Guzman, X. Hernandez-Velasco, B.M. Hargis and G. Tellez-Isaias, 2019. Identification of serum biomarkers for intestinal integrity in a broiler chicken malabsorption model. Front. Vet. Sci., Vol. 6.
Ducatelle, R., E. Goossens, F.D. Meyer, V. Eeckhaut, G. Antonissen, F. Haesebrouck and F.V. Immerseel, 2018. Biomarkers for monitoring intestinal health in poultry: Present status and future perspectives. Vet. Res., Vol. 49.
Emmanuela, C., C. Pascalb and C. Lucb, 2007. Citrulline and the gut. Nutr. Gastrointestinal Tract, 10: 620-626.
Horne, R. and J.A. Foster, 2018. Metabolic and microbiota measures as peripheral biomarkers in major depressive disorder. Front. Psychiatry.
Wells, J.M., R.J. Brummer, M. Derrien, T.T. MacDonald and F. Troost et al., 2017. Homeostasis of the gut barrier and potential biomarkers. Am. J. Physiol. Gastrointest. Liver Physiol., 312: G171-G193.
Shang, Y., S. Kumar, B. Oakley and W.K. Kim, 2018. Chicken gut microbiota: Importance and detection technology. Front. Vet. Sci., Vol. 5.
Zhu, L., R. Liao, N. Wu, G. Zhu and C. Yang, 2019. Heat stress mediates changes in fecal microbiome and functional pathways of laying hens. Applied Microbiol. Biotechnol., 103: 461-472.
Tian, Y., G. Li, L. Chen, X. Bu and J. Shen et al., 2020. High-temperature exposure alters the community structure and functional features of the intestinal microbiota in Shaoxing ducks (Anas platyrhynchos). Poult. Sci., 99: 2662-2674.
Shuang, X., W. Xuejie, D. Huajie, Z. Minhong, Z. Ying and F. Jinghai, 2019. Changes in the cecal microbiota of laying hens during heat stress is mainly associated with reduced feed intake. Poult. Sci., 98: 5257-5264.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 The Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.