Effect of Palm Kernel Meal Inclusion on Growth Performance, Immune and Visceral Organ Weights and Cecal Lactic Acid Bacteria in Neonatal Broilers


Authors

  • Yordan Martínez Departamento de Ciencia y Producción Agropecuaria, Escuela Agrícola Panamericana Zamorano, Honduras
  • Aroldo Botello León Facultad de Ciencias Agropecuarias, Universidad Técnica “Luis Vargas Torres” de Esmeraldas, Esmeraldas, Ecuador
  • Kefyalew Gebeyew CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, China

DOI:

https://doi.org/10.3923/ijps.2020.257.264

Keywords:

Fattening bird, cecal beneficial bacteria, growth performance, palm kernel, visceral and immune organ

Abstract

Background and Objective: Feed represents up to 70% of the total cost of production in the poultry industry; the challenge is to find alternative sources available to increase economic profitability. The study aimed to evaluate growth performance, immune and visceral organ weights and cecal lactic acid bacteria in neonatal broilers fed 5, 10 and 15% of palm kernel meal in the diet. Materials and Methods: Overall, 1,152 birds of the Ross 308® genetic line were used, randomly distributed in four treatments and six repetitions per treatment during the first 10 days old. Isoproteic and isoenergetic diets were made. Results: The dietary inclusion with 5 and 10% palm kernel meal increased (p<0.05) the final body weight compared to the control treatment and the latter level of inclusion improved (p<0.05) the feed conversion ratio. In addition, the greater contribution of fiber due to the higher inclusion of palm kernel increased the relative weight of the gizzard, however the relative weight of the small intestine decreased (p<0.05) with the dietary use of palm kernel, whereas the other indicators measured did not change (p>0.05) due to the effect of experimental diets. Likewise, palm kernel meal as an alternative feed in broiler diets increased the growth of cecal lactic acid bacteria, the green bacillus with white halo being the most representative. Conclusion: Palm kernel meal (5 and 15%) improved the performance, with a greater proliferation of cecal lactic acid bacteria and with few modifications in the relative weight of the digestive and immune organs.

References

Mottet, A. and G. Tempio, 2017. Global poultry production: current state and future outlook and challenges. World Poult. Sci., 73: 245-256.

Saveewonlop, N., S. Rattanatabtimtong, Y. Ruangpanit, O. Songserm and S. Attamangkune, 2019. Effects of different phase-feeding programs with different feed forms on broiler growth performance, carcass traits and intestinal morphology. Int. J. Poult. Sci., 18: 181-186.

Valdivié-Navarroa, M., Y. Martínez-Aguilar, O. Mesa-Fleitasa, A. Botello-Leónc, C.B. Hurtadod and B. Velázquez-Martíe, 2020. Review of Moringa oleifera as forage meal (leaves plus stems) intended for the feeding of non-ruminant animals. Anim. Feed Sci. Technol., 260: 114338-114338.

Alshelmani, M.I., T.C. Loh, H.L. Foo, A.Q. Sazili and W.H. Lau, 2016. Effect of feeding different levels of palm kernel cake fermented by Paenibacillus polymyxa ATCC 842 on nutrient digestibility, intestinal morphology and gut microflora in broiler chickens. Anim. Feed Sci. Technol., 216: 216-224.

SAG., 2018. Para reactivar el rubro: SAG y productores de palma aceitera logran consensos. Gobierno De La Republica De Honduras.

Huang, C., S. Zhang, H.H. Stein, J. Zhao, D. Li and C. Lai, 2018. Effect of inclusion level and adaptation duration on digestible energy and nutrient digestibility in palm kernel meal fed to growing-finishing pigs. Nonruminant Nutr. Feed Process., 3: 395-402.

Abdelrahman, M.M., I. Alhidary, H.H. Albaadani, M. Alobre, R.U. Khan and R.S. Aljumaah, 2019. Effect of palm kernel meal and malic acid on rumen characteristics of growing naemi lambs fed total mixed ration. Anim., Vol. 9, No. 7.

Chen, W.L., M.F. Jahromi, S.C.L. Candyrine, J.B. Liang, N. Abdullah and Z. Idrus, 2018. Enzymatic hydrolysis drastically reduces fibre content of palm-kernel expeller, but without enhancing performance in broiler chickens. Anim. Prod. Sci., (In Press).

Kalmendal, R., K. Elwinger, L. Holm and R. Tauson, 2011. High-fibre sunflower cake affects small intestinal digestion and health in broiler chickens. Br. Poult. Sci., 52: 86-96.

Sundu, B., A. Kumar and J. Dingle, 2006. Palm kernel meal in broiler diets: Effect on chicken performance and health. World's Poult. Sci. J., 62: 316-325.

Chong, C.H., I. Zulkifli and R. Blair, 2008. Effects of dietary inclusion of palm kernel cake and palm oil, and enzyme supplementation on performance of laying hens. Asian-Aust. J. Anim. Sci., 21: 1053-1058.

Mustafa, M.F., A.R. Alimon, M.W. Zahari, I. Idris and M.H. Bejo, 2004. Nutrient digestibility of palm kernel cake for muscovy ducks. Anim. Breed. Genet., 17: 514-517.

FEDNA., 2015. Harina de extracción de palmiste. España: Federación Española para el Desarrollo de la Nutrición Animal. http://www.fundacionfedna.org/node/440

Martinez, Y., Y. Carrion, R. Rodriguez, M. Valdivie and C. Olmo et al., 2015. Growth performance, organ weights and some blood parameters of replacement laying pullets fed with increasing levels of wheat bran. Revista Brasileira Ciencia Avicola, 17: 347-354.

Shakila, S., P.S. Reddy, P.V.V.S. Reddy, J.V. Ramana and A. Ravi, 2012. Effect of palm kernel meal on the performance of broilers. Tamilnadu J. Vet. Anim. Sci., 8: 227-234.

Abdollahi, M.R., B.J. Hosking, D. Ning and V. Ravindran, 2016. Influence of palm kernel meal inclusion and exogenous enzyme supplementation on growth performance, energy utilization and nutrient digestibility in young broilers. Asian-Aust. J. Anim. Sci., 29: 539-548.

Mardhati, M., H.K. Wong and S. Noraini, 2011. Growth performance and carcass quality of broilers fed with palm kernel meal-based rations. J. Trop. Agric. Food Sci., 39: 157-166.

Iyayi, E.A. and B.I. Davies, 2005. Effect of enzyme supplementation of palm kernel meal and brewer's dried grain on the performance of broilers. Int. J. Poult. Sci., 4: 76-80.

Olukomaiyaa, O., C. Fernandoa, R. Mereddyb, X. Lic and Y. Sultanbawaa, 2019. Solid-state fermented plant protein sources in the diets of broiler chickens: A review. Anim. Nutr., 5: 319-330.

Shang, Y., S. Kumar, B. Oakley and W.K. Kim, 2018. Chicken gut microbiota: Importance and detection technology. Front. Vet. Sci., Vol. 5.

FAO., 2013. Poultry Development Review. Food and Agriculture Organization of the United Nations, Rome, Italy, ISBN: 978-92-5-108067-2, Pages: 120.

Niewold, T.A., 2007. The nonantibiotic anti-inflammatory effect of antimicrobial growth promoters, the real mode of action? A hypothesis. Poult. Sci., 86: 605-609.

Sarica, S., A. Ciftci, E. Demir, K. Kilinc and Y. Yildirim, 2005. Use of an antibiotic growth promoter and two herbal natural feed additives with and without exogenous enzymes in wheat based broiler diets. S. Afr. J. Anim. Sci., 35: 61-72.

Soltan, M.A., 2009. Growth performance, immune response and carcass traits of broiler chicks fed on graded levels of palm kernel cake without or with enzyme supplementation. Livest. Res. Rural Dev., Vol. 21.

Svihus, B., 2014. Function of the digestive system. J. Appl. Poult. Res., 23: 306-314.

Svihus, B., 2011. The gizzard: Function, influence of diet structure and effects on nutrient availability. World's Poult. Sci. J., 67: 207-224.

Hetland, H., B. Svihus and M. Choct, 2005. Role of insoluble fiber on gizzard activity in layers. J. Applied Poul. Res., 14: 38-46.

Mateos, G.G., E. Jimenez-Moreno, M.P. Serrano and R.P. Lazaro, 2012. Poultry response to high levels of dietary fiber sources varying in physical and chemical characteristics. J. Appl. Poult. Res., 21: 156-174.

Martinez, M.P., L. Savon, L. Dihigo and R. Rodriguez, 2008. Morphometric indicators of the gastrointestinal tract and its accessory organs with the inclusion of foliage of Lablab purpureus in the rations for broiler chickens. Cuban J. Agric. Sci., 42: 185-188.

Dihigo, L.E., A. Oramas, A. Montejo, M. Cueto and R. Herrera, 2010. Cecal and blood fermentative indicators in broiler chickens fed Morus alba foliage meal in the ration. Cuban J. Agric. Sci., 44: 49-53.

Maryam, M., H. Khosravinia and B.K. Parizadian, 2019. Single and combined effects of Satureja khuzistanica essential oils and acetic acid on productive performance, certain blood and kidney health-related parameters in broiler chickens. Ital. J. Anim. Sci., 18: 877-887.

Oso, A.O., R.U. Suganthi, R.G.B. Manjunatha, P.K. Malik and G. Thirumalaisamy et al., 2019. Effect of dietary supplementation with phytogenic blend on growth performance, apparent ileal digestibility of nutrients, intestinal morphology, and cecal microflora of broiler chickens. Poult. Sci., 98: 4755-4766.

Park, J.H. and I.H. Kim, 2020. Effects of dietary Achyranthes japonica extract supplementation on the growth performance, total tract digestibility, cecal microflora, excreta noxious gas emission, and meat quality of broiler chickens. Poult. Sci., 99: 463-470.

Zaefarian, F., M.R. Abdollahi, A. Cowieson and V. Ravindran, 2019. Avian liver: The forgotten organ. Animals, Vol. 9, No. 2.

Fontana, E.A., W.D. Weaver Jr., D.M. Denbow and B.A. Watkins, 1993. Early feed restriction of broilers: Effects on abdominal fat pad, liver and gizzard weights, fat deposition and carcass composition. Poult. Sci., 72: 243-250.

Mazur-Kuśnirek, M., Z. Antoszkiewicz, K. Lipiński, J. Kaliniewicz and S. Kotlarczyk, 2019. The effect of polyphenols and vitamin E on the antioxidant status and meat quality of broiler chickens fed low-quality oil. Arch. Anim. Breed., 62: 287-296.

Wang, S.H., W.W. Wang, H.J. Zhang, J. Wang, Y. Chen, S.G. Wu and G.H. Qi, 2019. Conjugated linoleic acid regulates lipid metabolism through the expression of selected hepatic genes in laying hens. Poult. Sci., 98: 4632-4639.

Vertiprakhov, V.G., A.A. Grozina, V.I. Fisinin, I.A. Egorov, 2018. The correlation between the activities of digestive enzymes in the pancreas and blood serum in chicken. Open J. Anim. Sci., 8: 215-222.

Erdaw, M.M. and W.T. Beyene, 2018. Anti-nutrients reduce poultry productivity: Influence of trypsin inhibitors on pancreas. Asian J. Poult. Sci., 12: 14-24.

Harash, G., K.C. Richardson, Z. Alshamy, H. Hünigen, H.M. Hafez, J. Plendl and S. Al Masri, 2019. Heart ventricular histology and microvasculature together with aortic histology and elastic lamellar structure: A comparison of a novel dual-purpose to a broiler chicken line. PLos ONE, Vol. 14, No. 3.

Chinajariyawong, C. and N. Muangkeow, 2011. Carcass yield and visceral organs of broiler chickens fed palm kernel meal or Aspergillus wentii tistr 3075 fermented palm kernel meal. Walailak J. Sci. Technol., 8: 175-185.

Bello, K.M., E.O. Oyawoye, S.E. Bogoro and U.D. Dass, 2011. Performance of broilers fed varying levels of palm kernel cake. Int. J. Poult. Sci., 10: 290-294.

Cañete, S.N., Y.M. Aguilar, A.E. Rosabal and D.M. Toro, 2017. Antidiarrheal effects of Anacardium occidentale L. leaf powder on newborn chicks. J. Anim. Prod., 29: 47-54.

Tarek, K., M. Mohamed, B. Omar and B. Hassina, 2012. Morpho-histological study of the thymus of broiler chickens during post-hashing age. Int. J. Poult. Sci., 11: 78-80.

Cooper, M.D., R.D. Peterson, M.A. South and R.A. Good, 1966. The functions of the thymus system and the bursa system in the chicken. J. Exp. Med., 123: 75-102.

Sadeghi, A., M. Toghyani and A. Gheisari, 2015. Effect of various fiber types and choice feeding of fiber on performance, gut development, humoral immunity and fiber preference in broiler chicks. Poult. Sci., 94: 2734-2743.

Mera-Zúñiga, F., A. Pro-Martínez, J.F. Zamora-Natera, E. Sosa-Montes, J.D. Guerrero-Rodríguez et al., 2019. Soybean meal substitution by dehulled lupine (Lupinus angustifolius) with enzymes in broiler diets. Asian-Australas J. Anim. Sci., 32: 564-573.

Aguilar, Y.M., O.M. Yero, G. Liu, W. Ren and R.R. Bertot et al., 2013. Effect of dietary supplementation with Anacardium occidentale on growth performance and immune and visceral organ weights in replacement laying pullets. J. Food Agric. Environ., 11: 1352-1357.

Yang, Z., C. Liu, W. Zheng, X. Teng and S. Li, 2016. The functions of antioxidants and heat shock proteins are altered in the immune organs of selenium-deficient broiler chickens. Biol. Trace Elem. Res., 169: 341-351.

Feng, J., L. Wang, L. Zhou, X. Yang and X. Zhao, 2016. Using In vitro immunomodulatory properties of lactic acid bacteria for selection of probiotics against Salmonella infection in broiler chicks. PLoS ONE, Vol. 11, No. 1.

Latorre, J.D., X. Hernandez-Velasco, L.R. Bielke, J.L. Vicente and R. Wolfenden et al., 2015. Evaluation of a Bacillus direct-fed microbial candidate on digesta viscosity, bacterial translocation, microbiota composition and bone mineralisation in broiler chickens fed on a rye-based diet. Br. Poult. Sci., 56: 723-732.

Zulkifli, I., H.S.I. Rahayu, A.R. Alimon, M.K. Vidyadaran and S.A. Babjee, 2009. Gut microflora and intestinal morphology of commercial broiler chickens and red jungle fowl fed diets containing palm kernel meal. Arch. Geflugelk., 73: 49-55.

Feng, Y., L. Wang, A. Khan, R. Zhao, S. Wei and X. Jing, 2020. Fermented wheat bran by xylanase-producing Bacillus cereus boosts the intestinal microflora of broiler chickens. Poult. Sci., 99: 263-271.

Sugihartoa, S. and S. Ranjitkarb, 2019. Recent advances in fermented feeds towards improved broiler chicken performance, gastrointestinal tract microecology and immune responses: A review. Anim. Nutr., 5: 1-10.

Immerseel, F.V., V. Eeckhaut, R.J. Moore, M. Choct and R. Ducatelle, 2017. Beneficial microbial signals from alternative feed ingredients: a way to improve sustainability of broiler production? Microb. Biotechnol., 10: 1008-1011.

Carlson, J.L., J.M. Erickson, J.M. Hess, T.J. Gould and J.L. Slavin, 2017. Prebiotic dietary fiber and gut health: Comparing the In vitro fermentations of beta-glucan, inulin and xylooligosaccharide. Nutrients, Vol. 9, No. 12.

Allen, V.M., F. Fernandez and M.H. Hinton, 1997. Evaluation of the influence of supplementing the diet with mannose or palm kernel meal on salmonella colonisation in poultry. Br. Poult. Sci., 38: 485-488.

Utami, W., A. Meryandini and K.G. Wiryawan, 2013. Characterization of bacterial mannanase for hydrolyzing palm kernel cake to produce manno-oligosaccharides prebiotics. Media Peternakan, 36: 192-196.

Fernandez, F., M. Hinton and B. van Gils, 2002. Dietary mannan-oligosaccharides and their effect on chicken caecal microflora in relation to Salmonella Enteritidis colonization. Avian Pathol., 31: 49-58.

Saengkerdsub, S., P. Herrera, C.L. Woodward, R.C. Anderson, D.J. Nisbet and S.C. Ricke, 2007. Detection of methane and quantification of methanogenic archaea in faeces from young broiler chickens using real‐time PCR. Lett. Applied Microbiol., 45: 629-634.

Bednarczyk, M., K. Stadnicka, I. Kozłowska, C. Abiuso and S. Tavaniello et al., 2016. Influence of different prebiotics and mode of their administration on broiler chicken performance. Animal, 10: 1271-1279.

Downloads

Published

2020-05-15

Issue

Section

Research Article

How to Cite

Martínez , Y., León, A. B., & Gebeyew, K. (2020). Effect of Palm Kernel Meal Inclusion on Growth Performance, Immune and Visceral Organ Weights and Cecal Lactic Acid Bacteria in Neonatal Broilers. International Journal of Poultry Science, 19(6), 257–264. https://doi.org/10.3923/ijps.2020.257.264