In vitro Evaluation of Coconut Husk Potential as Phytobiotics for Poultry


Authors

  • Rusdi Rusdi Department of Animal Sciences, Faculty of Animal Husbandry and Fishery, Tadulako University, Jl. Soekarno Hatta, Palu 94119, Indonesia
  • Asriani Hasanuddin Department of Animal Sciences, Faculty of Animal Husbandry and Fishery, Tadulako University, Jl. Soekarno Hatta, Palu 94119, Indonesia
  • Rosmiaty Arief Department of Animal Sciences, Faculty of Animal Husbandry and Fishery, Tadulako University, Jl. Soekarno Hatta, Palu 94119, Indonesia

DOI:

https://doi.org/10.3923/ijps.2019.109.115

Keywords:

<i>Lactobacillus acidophilus</i>, <i>Staphylococcus aureus</i>, antioxidant, coconut husk, phytobiotics, poultry production

Abstract

Background and Objective: The current in vitro study was carried out to evaluate the potential of coconut husks as phytobiotics for poultry. Materials and Methods: Coconut husks were collected from the local market and dried in the oven. The dried materials were finely ground and extracted using methanol, ethyl acetate or acetone. Crude extracts from the three types of solvents were rotary evaporated until dry. The dry extracts were then subjected to chemical analysis, evaluation of antioxidant and antibacterial activities and bacterial growth performance of Lactobacillus acidophilus. Results: The results indicated that the extracts consisted of bioactive compounds such as flavonoid, steroid, gallic acid and tannin and the content was affected by the type of solvent (p<0.05). The type of solvent also had a significant effect on antioxidant activity and antibacterial activity for Escherichia coli (p<0.05) but not for Staphylococcus aureus (p>0.05). Antioxidant activity (IC50) was 85.15, 119.78 and 143.59 ppm ascorbic acid equivalent antioxidant capacity (AEAC) for methanol, ethyl acetate and acetone, respectively. The average inhibition for pathogenic E. coli was 11.82, 11.93 and 12.34 mm for methanol, ethyl acetate and acetone respectively, while inhibition for S. aureus was 11.99, 12.18 and 12.27 mm for methanol, ethyl acetate and acetone respectively. Interestingly, the extracts also produced a significant effect (p<0.05) on the growth of Lactobacillus acidophilus. The average growth improvement was 1.62 and 1.77 nephelometric turbidity units (NTUs) for methanol and acetone, respectively. Conclusion: Crude extracts of coconut husk have the potential to be used as phytobiotics for poultry production.

References

Windisch, W., K. Schedle, C. Plitzner and A. Kroismayr, 2008. Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci., 86: E140-E148.

Gheisar, M.M. and I.H. Kim, 2018. Phytobiotics in poultry and swine nutrition: A review. Ital. J. Anim. Sci., 17: 92-99.

Esquenazi, D., M.D. Wigg, M.M.F.S. Miranda, H.M. Rodrigues and J.B.F. Tostes et al., 2002. Antimicrobial and antiviral activities of polyphenolics from Cocos nucifera Linn. (Palmae) husk fiber extract. Res. Microbiol., 153: 647-652.

Oliveira, L.M.B., C.M.L. Bevilaqua, C.T.C. Costa, I.T.F. Macedo and R.S. Barros et al., 2009. Anthelmintic activity of Cocos nucifera L. against sheep gastrointestinal nematodes. Vet. Parasitol., 159: 55-59.

Gao, D.F., Y.J. Zhang, C.R. Yang, K.K. Chen and H.J. Jiang, 2008. Phenolic antioxidants from green tea produced from Camellia taliensis. J. Agric. Food Chem., 56: 7517-7521.

Singla, R.K., N. Jaiswal, V. Bhat and H. Jagani, 2011. Antioxidant and antimicrobial activities of Cocos nucifera Linn. (Arecaceae) endocarp extracts. Indo Global J. Pharamaceut. Sci., 1: 354-361.

Sung, S.H., K.H. Kim, B.T. Jeon, S.H. Cheong and J.H. Park et al., 2012. Antibacterial and antioxidant activities of tannins extracted from agricultural by-products. J. Med. Plants Res., 6: 3072-3079.

Rodiah, M.H., Z.N.A. Fhadhila, N. Kawasaki, H.N. Asiah and M.Y. Aziah, 2018. Antioxidant activity of natural pigment from husk of coconut. Pertanika J. Trop. Agric. Sci., 41: 441-452.

Bakkali, F., S. Averbeck, D. Averbeck and M. Idaomar, 2008. Biological effects of essential oils-A review. Food Chem. Toxicol., 46: 446-475.

Phoem, A.N. and S.P. Voravuthikunchai, 2013. Eleutherine americana as a growth promotor for infant intestinal microbiota. Anaerobe, 20: 14-19.

Lokeswari, N. and P. Sujatha, 2011. Isolation of tannins from Caesalpinia coriaria and effect of physical parameters. Int. Res. J. Pharm., 2: 146-152.

Striegel, M.F. and J. Hill, 1996. Thin-layer Chromatography for Binding Media Analysis. The Getty Conservation Institute, Los Angeles, USA., ISBN-13: 9780892363902, Pages: 184.

Krings, U. and R.G. Berger, 2001. Antioxidant activity of some roasted foods. Food Chem., 72: 223-229.

Ayad, E.H.E., A. Verheul, J.T.M. Wouters and G. Smit, 2000. Application of wild starter cultures for flavour development in pilot plant cheese making. Int. Dairy J., 10: 169-179.

Steel, R.G.D. and J.H. Torrie, 1990. Principles and Procedures of Statistics. McGraw Hill Book Co., New York, USA Pages: 633.

Hagerman, A.E., 1988. Extraction of tannin from fresh and preserved leaves. J. Chem. Ecol., 14: 453-462.

Porter, W.L., 1980. Recent Trends in Food Applications of Antioxidants. In: Autoxidation in Food and Biological Systems, Simic, M.G. and M. Karel (Eds.). Plenum Press, New York, USA., ISBN-13: 978-1-4757-9353-6, pp: 295-365.

Minussi, R.C., M. Rossi, L. Bologna, L. Cordi, D. Rotilio, G.M. Pastore and N. Duran, 2003. Phenolic compounds and total antioxidant potential of commercial wines. Food Chem., 82: 409-416.

Moon, S.H. and K.Y. Park, 2000. Antioxidative effect of persimmon leaves. Korean J. Food Nutr., 13: 53-58.

Rusdi, H. Asriani and A. Rosmiaty, 2014. Evaluation of phytogenic potential of legume leaves for broiler chicken. Proceedings of the 16th AAAP Animal Science Congress, November 10-14, 2014, Gadjah Mada University, Yogyakarta, Indonesia, pp: 521-524.

Rusdi, H. Asriani and A. Rosmiaty, 2016. Is eleutherine (Eleutherine americana) potential as feed additive for poultry? Proceedings of the 17th AAAP Animal Science Congress, August 22-25, 2016, Fukuoka, Japan.

Nadia, R.L., R.A. Hassan, E.M. Qota and H.M. Fayek, 2008. Effect of natural antioxidant on oxidative stability of eggs and productive and reproductive performance of laying hens. Int. J. Poult. Sci., 7: 134-150.

Abd El-Hakim, A.S., G. Cherian and M.N. Ali, 2009. Use of organic acid, herbs and their combination to improve the utilization of commercial low protein broiler diets. Int. J. Poult. Sci., 8: 14-20.

Giannenas, I., I.S. Pappas, S. Mavridis, G. Kontopidis, J. Skoufos and I. Kyriazakis, 2010. Performance and antioxidant status of broiler chickens supplemented with dried mushrooms (Agaricus bisporus) in their diet. Poult. Sci., 89: 303-311.

Tavarez, M.A., D.D. Boler, K.N. Bess, J. Zhao and F. Yan et al., 2011. Effect of antioxidant inclusion and oil quality on broiler performance, meat quality and lipid oxidation. Poult. Sci., 90: 922-930.

Akiyama, H., K. Fujii, O. Yamasaki, T. Oono and K. Iwatsuki, 2001. Antibacterial action of several tannins against Staphylococcus aureus. J. Antimicrob. Chemother., 48: 487-491.

Sakunpak, A. and P. Panichayupakaranant, 2012. Antibacterial activity of Thai edible plants against gastrointestinal pathogenic bacteria and isolation of a new broad spectrum antibacterial polyisoprenylated benzophenone, chamuangone. Food Chem., 130: 826-831.

Friedman, M., P.R. Henika, C.E. Levin and R.E. Mandrell, 2004. Antibacterial activities of plant essential oils and their components against Escherichia coli O157:H7 and Salmonella enterica in apple juice. J. Agric. Food Chem., 52: 6042-6048.

Oussalah, M., S. Caillet, L. Saucier and M. Lacroix, 2007. Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157:H7, Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control, 18: 414-420.

Ferreira, P.M.P., D.F. Farias, J.T. de Abreu Oliveira and A. de Fátima Urano Carvalho, 2008. Moringa oleifera: Bioactive compounds and nutritional potential. Rev. Nutr., 21: 431-437.

Banso, A. and S.O. Adeyemo, 2007. Evaluation of antibacterial properties of tannins isolated from Dichrostachys cinerea. Afr. J. Biotechnol., 6: 1785-1787.

Min, B.R., W.E. Pinchak, R. Merkel, S. Walker, G. Tomita and R.C. Anderson, 2008. Comparative antimicrobial activity of tannin extracts from perennial plants on mastitis pathogens. Scient. Res. Essays, 3: 66-73.

Chung, K.T., S.E. Stevens Jr., W.F. Lin and C.I. Wei, 1993. Growth inhibition of selected food-borne bacteria by tannic acid, propyl gallate and related compounds. Lett. Applied Microbiol., 17: 29-32.

Ikigai, H., T. Nakae, Y. Hara and T. Shimamura, 1993. Bactericidal catechins damage the lipid bilayer. Biochim. Biophys. Acta, 1147: 132-136.

Hoshino, N., T. Kimura, A. Yamaji and T. Ando, 1999. Damage to the cytoplasmic membrane of Escherichia coli by catechin-copper (II) complexes. Free Radic. Biol. Med., 27: 1245-1250.

Haslam, E., 1996. Natural polyphenols (vegetable tannins) as drugs: Possible modes of action. J. Nat. Prod., 59: 205-215.

Min, B.R., W.E. Pinchak, R.C. Anderson and T.R. Callaway, 2007. Effect of tannins on the in vitro growth of Escherichia coli O157:H7 and in vivo growth of generic Escherichia coli excreted from steers. J. Food Protect., 70: 543-550.

Scalbert, A., 1991. Antimicrobial properties of tannins. Phytochemistry, 30: 3875-3883.

Min, B.R., T.N. Barry, G.T. Attwood and W.C. McNabb, 2003. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: A review. Anim. Feed Sci. Technol., 106: 3-19.

Ahn, Y.J., J.H. Kwon, S.H. Chae, J.H. Park and J.Y. Yoo, 1994. Growth-inhibitory responses of human intestinal bacteria to extracts of oriental medicinal plants. Microb. Ecol. Health Dis., 7: 257-261.

Ahn, Y.J., C.O. Lee, J.H. Kweon, J.W. Ahn and J.H. Park, 1998. Growth-inhibitory effects of Galla Rhois-derived tannins on intestinal bacteria. J. Applied Microbiol., 84: 439-443.

Maligan, J.M., J. Kusnadi and E.S. Murtini, 2006. [Viability of immobilized probiotic bacteria, Bifidobacterium bifidum, Lactobacillus acidophilus and Lactobacilus casei, in an emulsion of corn and their survival in subsequent treatments]. J. Teknol. Pertanian, 7: 141-149, (In Indonesian).

Usmiati, S., W. Broto and H. Setyanto, 2011. [Characteristic of cow milk dadih using starter of probiotic of lactic acid bacteria]. J. Ilmu Ternak dan Veteriner, 16: 141-153, (In Indonesian).

Bernet, M.F., D. Brassart, J.R. Neeser and A.L. Servin, 1993. Adhesion of human bifidobacterial strains to cultured human intestinal epithelial cells and inhibition of enteropathogen-cell interactions. Applied Environ. Microbiol., 59: 4121-4128.

Naidu, A.S. and R.A. Clemens, 2000. Probiotics. In: Natural Food Antimicrobial System, Naidu, A.S. (Ed.). Chapter 17, CRC Press, Boca Raton, FL., USA., ISBN-13: 9781420039368, pp: 431-462.

Chung, C.H. and D.F. Day, 2004. Efficacy of Leuconostoc mesenteroides (ATCC 13146) isomaltooligosaccharides as a poultry prebiotic. Poult. Sci., 83: 1302-1306.

Yang, Y., P.A. Iji, A. Kocher, E. Thomson, L.L. Mikkelsen and M. Choct, 2008. Effects of mannanoligosaccharide in broiler chicken diets on growth performance, energy utilisation, nutrient digestibility and intestinal microflora. Br. Poult. Sci., 49: 186-194.

Downloads

Published

2019-02-15

Issue

Section

Research Article

How to Cite

Rusdi, R., Hasanuddin , A., & Arief, R. (2019). In vitro Evaluation of Coconut Husk Potential as Phytobiotics for Poultry. International Journal of Poultry Science, 18(3), 109–115. https://doi.org/10.3923/ijps.2019.109.115