Effect of the Phytase Inclusion in Broiler Breeder Diets on Fecal and Egg Characteristics


Authors

  • Basheer Nusairat Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695-7608, USA
  • Mireille Arguelles Ramos Department of Animal Science, University of Puerto Rico, Mayaguez, PR 00681-9000, USA
  • John Brake

DOI:

https://doi.org/10.3923/ijps.2018.1.7

Keywords:

Broiler breeders, fecal minerals, fecal moisture, liquid portion, phytase

Abstract

Objective: A study was conducted to determine the effect of phytase inclusion in broiler breeder diets on fecal and egg characteristics of individually caged females. Materials and Methods: A total of 184 female broiler breeders were fed growing and laying diets containing 0.7% or 2.7% calcium (Ca) and 0.35% or 0.12% available phosphorus (AvP), respectively, with one of four graded levels of phytase 0 (Control), 300, 600 and 1200 FTU kg–1 with 46 replicate cages/treatment at photostimulation. Results: Feeding 1200 FTU kg–1 of phytase produced greater fecal liquid portion at 31 week (p<0.001) and 38 week (p<0.01) while fecal phosphorus (P) was increased (p<0.01) at 38 week in birds that had consumed either 600 or 1200 FTU kg–1 of phytase. There was no significant effect of phytase on egg characteristics or egg production. Conclusion: When formulating broiler breeder diets with phytase, attention should be made to the quantity of enzyme used to avoid increased liquid feces.

References

Anderson, R.J., 1912. Phytin and phosphoric acid esters of inosite. J. Biol. Chem., 11: 471-488.

NRC., 1994. Nutrient Requirements of Poultry. 9th Edn., National Academy Press, Washington, DC., USA., ISBN-13: 9780309048927, Pages: 176.

Maenz, D.D. and H.L. Classen, 1998. Phytase activity in the small intestinal brush border membrane of the chicken. Poult. Sci., 77: 557-563.

Foy, R.H. and P.J.A. Withers, 1995. The contribution of agricultural phosphorus to eutrophication. Proceedings of the Fertilizer Society, (FS'95), Belfast, UK., pp: 1-32.

Punna, S. and D.A. Roland Sr., 1999. Variation in phytate phosphorus utilization within the same broiler strain. J. Applied Poult. Res., 8: 10-15.

Yi, Z., E.T. Kornegay, V. Ravindran and D.M. Denbow, 1996. Improving phytate phosphorus availability in corn and soybean meal for broilers using microbial phytase and calculation of phosphorus equivalency values for phytase. Poult. Sci., 75: 240-249.

Selle, P.H. and V. Ravindran, 2007. Microbial phytase in poultry nutrition. Anim. Feed Sci. Technol., 135: 1-41.

Nolan, K.B., P.A. Duffin and D.J. McWeeny, 1987. Effects of phytate on mineral bioavailability. In vitro studies on Mg2+, Ca2+, Fe3+, Cu2+ and Zn2+ (also Cd2+) solubilities in the presence of phytate. J. Sci. Food Agric., 40: 79-85.

Karimi, A., Y. Min, C. Lu, C. Coto, M.R. Bedford and P.W. Waldroup, 2013. Assessment of potential enhancing effects of a carbohydrase mixture on phytase efficacy in male broiler chicks fed phosphorus-deficient diets from 1 to 18 days of age. Poult. Sci., 92: 192-198.

Adeola, O., J.S. Sands, P.H. Simmins and H. Schulze, 2004. The efficacy of an Escherichia coli-derived phytase preparation. J. Anim. Sci., 82: 2657-2666.

Dilger, R.N., E.M. Onyango, J.S. Sands and O. Adeola, 2004. Evaluation of microbial phytase in broiler diets. Poult. Sci., 83: 962-970.

Naves, L.D.P., P.B. Rodrigues, C. Meneghetti, V.M.P. Bernardino and D.H. de Oliveira et al., 2016. Efficiency of microbial phytases in diets formulated with different calcium:phosphorus ratios supplied to broilers from 35 to 42 days of age. J. Applied Anim. Res., 44: 446-453.

Plumstead, P.W., H. Romero-Sanchez, R.O. Maguire, A.G. Gernat and J. Brake, 2007. Effects of phosphorus level and phytase in broiler breeder rearing and laying diets on live performance and phosphorus excretion. Poult. Sci., 86: 225-231.

Harms, R.H., S. Bootwalla and H.R. Wilson, 1984. Performance of broiler breeder hens on wire and litter floors. Poult. Sci., 63: 1003-1007.

Leeson, S. and J.D. Summers, 1987. Effect of dietary calcium levels near the time of sexual maturity on water intake and excreta moisture content. Poult. Sci., 66: 1918-1923.

Guo, X., K. Huang, F. Chen, J. Luo and C. Pan, 2008. High dietary calcium causes metabolic alkalosis in egg-type pullets. Poult. Sci., 87: 1353-1357.

Enting, H., J. de los Mozos, A.G. del Alamo and P.P. de Ayala, 2009. Influence of minerals on litter moisture. Proceedings of the 17th European Symposium on Poultry Nutrition, August 23-27, 2009, Edinburgh, UK., pp: 47-52.

Bedford, M.R., T. Parr, M.E. Persia, A. Batal and C.L. Wyatt, 2007. Influence of dietary calcium and phytase source on litter moisture and mineral content. Poult. Sci., 86: 673-673.

Francesch, M. and J. Brufau, 2004. Nutritional factors affecting excreta/litter moisture and quality. Worlds Poult. Sci. J., 60: 64-75.

FASS, 2010. Guide for the Care and Use of Agricultural Animals in Research and Teaching. 3rd Edn., Federation of Animal Science Societies, Champaign, Illinois, ISBN: 9781884706110, Pages: 169.

AOAC International, W. Horwitz and G.W. Latimer, 2010. Official Methods of Analysis of AOAC International. 18th Edn., AOAC International, Gaithersburg, Maryland, ISBN: 9780935584806.

SAS., 2011. SAS User’s Guide, Version 9.3. SAS Inst. Inc., Cary, NC., USA.

Pos, J., H. Enting and A. Veldman, 2003. Effect of phytase and dietary calcium level on litter quality and broiler performance. Proceedings of the 14th European Symposium on Poultry Nutrition, August 10-14, 2003, Lillehammerm, Norway, pp: 7-18.

Smith, A., S.P. Rose, R.G. Wells and V. Pirgozliev, 2000. Effect of excess dietary sodium, potassium, calcium and phosphorus on excreta moisture of laying hens. Br. Poult. Sci., 41: 598-607.

Sebastian, S., S.P. Touchburn and E.R. Chavez, 1998. Implications of phytic acid and supplemental microbial phytase in poultry nutrition: A review. World Poult. Sci. J., 54: 27-47.

Sheikh, M.S., J.A. Maguire, M. Emmett, C.A.S. Ana, M.J. Nicar, L.R. Schiller and J.S. Fordtran, 1989. Reduction of dietary phosphorus absorption by phosphorus binders. A theoretical, in vitro and in vivo study. J. Clin. Invest., 83: 66-73.

Berner, W., R. Kjnne and H. Murer, 1976. Phosphate transport into brush-border membrane vesicles isolated from rat small intestine. Biochem. J., 160: 467-474.

Kalmar, I.D., G. Werquin and G.P.J. Jenssen, 2007. Apparent nutrient digestibility and excreta quality in African grey parrots fed two pelleted diets based on coarsely or finely ground ingredients. J. Anim. Physiol. Anim. Nutr., 91: 210-216.

Hori, G., M.F. Wang, Y.C. Chan, T. Komatsu and Y. Wong et al., 2001. Soy protein hydrolyzate with bound phospholipids reduces serum cholesterol levels in hypercholesterolemic adult male volunteers. Biosci. Biotechnol. Biochem., 65: 72-78.

Castro-Freitas, D.D.G., 2005. Barras de cereais elaboradas com proteina de soja e germen de trigo, caracteristicas fisico-quimicas e textura durante armazenamento. Arch. Latinoam. Nutr., 55: 299-304.

Selle, P.H., V. Ravindran, R.A. Caldwell and W.L. Bryden, 2000. Phytate and phytase: Consequences for protein utilisation. Nutr. Res. Rev., 13: 255-278.

Downloads

Published

2017-12-15

Issue

Section

Research Article

How to Cite

Nusairat, B., Ramos, M. A., & Brake , J. (2017). Effect of the Phytase Inclusion in Broiler Breeder Diets on Fecal and Egg Characteristics. International Journal of Poultry Science, 17(1), 1–7. https://doi.org/10.3923/ijps.2018.1.7