Detection of Antimicrobial Phenotypes, β-Lactamase Encoding Genes and Class I Integrons in Salmonella Serovars Isolated from Broilers


Authors

  • Marwa Halawa Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh-33516, Egypt
  • Amgad Moawad Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh-33516, Egypt
  • Ibrahim Eldesouky Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh-33516, Egypt
  • Hazem Ramadan Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura-35516, Egypt

DOI:

https://doi.org/10.3923/ijps.2016.1.7

Keywords:

β-lactamase, antimicrobial resistance, broilers, integrons, Salmonella, zoonoses

Abstract

This study was conducted to determine the occurrence, antimicrobial resistance profile, β-lactamase encoding genes and class I integrons (intI) of Salmonella serovars in broiler flocks. A total of 100 diseased chickens (5 samples per bird; cloacal swab, liver, gall bladder, spleen and intestinal content) were randomly selected from different broiler farms at Dakahliya and Kafrelsheikh Governorates, Egypt, during the period from September through December 2013. Conventional isolation and serotyping, antimicrobial resistance phenotyping, PCR identification of β-lactamase encoding genes and intI were performed. The culturing and serotyping identified 23 (23%) Salmonella isolates from diseased birds that belonged to 13 serotypes. The predominant serovars distinguished in this study were Salmonella Enteritidis, S. Typhimurium, S. Kentucky and S. Infantis that constituted 52.2% (12/23) of all isolates. By antimicrobial resistance testing, 87% (20/23) of isolates exhibited multidrug resistance (MDR; resistance to 5 or more antibiotics) mostly against vancomycin, oxacillin, amoxicillin, erythromycin and nalidixic acid. For 3rd generation cephalosporins, all the isolates were sensitive to cefoxitin and only 5 (21.7%) isolates displayed resistance to ceftriaxone and cefotaxime. Using PCR, all isolates were negative for blaSHV, blaCTX, blaCMY and blaOXA, while only 5 isolates (21.7%) harbored blaTEM (1080 bp). Variable amplicons with intI cassettes were detected by PCR from only 4 isolates (17.4%). Our findings highlighted the zoonotic potential of Salmonella in broilers with a possibility of antimicrobial resistance gene transmission to humans. Continuous surveillance is required to minimize the risk of human exposure to antimicrobial resistance pathogens from food producing animals.

References

Abd-Elghany, S.M., K.I. Sallam, A. Abd-Elkhalek and T. Tamura, 2015. Occurrence, genetic characterization and antimicrobial resistance of Salmonella isolated from chicken meat and giblets. Epidemiol. Infect., 143: 997-1003.

Abdellah, C., R.F. Fouzia, C. Abdelkader, S. Rachida and Z. Mouloud, 2009. Prevalence and anti-microbial susceptibility of Salmonella isolates from chicken carcasses and giblets in Meknes, Morocco. Afr. J. Microbiol. Res., 3: 215-219.

Ahmed, A.M. and T. Shimamoto, 2012. Genetic analysis of multiple antimicrobial resistance in Salmonella isolated from diseased broilers in Egypt. Microbiol. Immunol., 56: 254-261.

Ahmed, A.M., H. Shimabukuro and T. Shimamoto, 2009. Isolation and molecular characterization of multidrug-resistant strains of Escherichia coli and Salmonella from retail chicken meat in Japan. J. Food Sci., 74: M405-M410.

Ahmed, A.M., K. Furuta, K. Shimomura, Y. Kasama and T. Shimamoto, 2006. Genetic characterization of multidrug resistance in Shigella spp. from Japan. J. Med. Microbiol., 55: 1685-1691.

Ahmed, A.M., Y. Motoi, M. Sato, A. Maruyama, H. Watanabe, Y. Fukumoto and T. Shimamoto, 2007. Zoo animals as reservoirs of gram-negative bacteria harboring integrons and antimicrobial resistance genes. Applied Environ. Microbiol., 73: 6686-6690.

Alcaine, S.D., L.D. Warnick and M. Wiedmann, 2007. Antimicrobial resistance in nontyphoidal Salmonella. J. Food Protect., 70: 780-790.

Asakura, H., O. Tajima, M. Watarai, T. Shirahata, H. Kurazono and S. Makino, 2001. Effects of rearing conditions on the colonization of Salmonella enteritidis in the cecum of chicks. J. Vet. Med. Sci., 63: 1221-1224.

Bronzwaer, S.L., O. Cars, U. Buchholz, S. Moelstad and W. Goettsch et al., 2002. A European study on the relationship between antimicrobial use and antimicrobial resistance. Emerg. Infect. Dis., 8: 278-282.

Capita, R., M. Alvarez-Astorga, C. Alonso-Calleja, B. Moreno and M.D.C. Garcia-Fernandez, 2003. Occurrence of salmonellae in retail chicken carcasses and their products in Spain. Int. J. Food Microbiol., 81: 169-173.

Cardinale, E., J.D.P. Gros-Claude, K. Rivoal, V. Rose, F. Tall, G.C. Mead and G. Salvat, 2005. Epidemiological analysis of Salmonella enterica ssp. enterica serovars Hadar, Brancaster and Enteritidis from humans and broiler chickens in Senegal using pulsed-field gel electrophoresis and antibiotic susceptibility. J. Applied Microbiol., 99: 968-977.

Carraminana, J.J., C. Rota, I. Agustin and A. Herrera, 2004. High prevalence of multiple resistance to antibiotics in Salmonella serovars isolated from a poultry slaughterhouse in Spain. Vet. Microbiol., 104: 133-139.

CLSI., 2011. Performance standards for antimicrobial susceptibility testing: Twenty-first informational supplement. CLSI Document M02-A10 and M07-A08, Vol. 31, Clinical and Laboratory Standards Institute, Wayne, PA., USA.

De Oliveira, D.S., F.S. Flores, L.R. dos Santos and A. Brandelli, 2005. Antimicrobial resistance in Salmonella enteritidis strains isolated from broiler carcasses, food, human and poultry-related samples. Int. J. Food Microbiol., 97: 297-305.

Elumalai, S., G. Muthu, R.E.M. Selvam and S. Ramesh, 2014. Detection of TEM-, SHV- and CTX-M-type β-lactamase production among clinical isolates of Salmonella species. J. Med. Microbiol., 63: 962-967.

Gantois, I., R. Ducatelle, F. Pasmans, F. Haesebrouck, R. Gast, T.J. Humphrey and F. van Immerseel, 2009. Mechanisms of egg contamination by Salmonella enteritidis. FEMS Microbiol. Rev., 33: 718-738.

Hendriksen, R.S., A.R. Vieira, S. Karlsmose, D.M. Lo Fo Wong, A.B. Jensen, H.C. Wegener and F.M. Aarestrup, 2011. Global monitoring of Salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: Results of quality assured laboratories from 2001 to 2007. Foodborne Pathog. Dis., 8: 887-900.

Hur, J., C. Jawale and J.H. Lee, 2012. Antimicrobial resistance of Salmonella isolated from food animals: A review. Food Res. Int., 45: 819-830.

Kauffmann, G., 1974. Kauffmann white scheme. J. Acta Path. Microbiol. Sci., 61: 385-387.

Kim, M.S., T.H. Lim, J.H. Jang, D.H. Lee and B.Y. Kim et al., 2012. Prevalence and antimicrobial resistance of Salmonella species isolated from chicken meats produced by different integrated broiler operations in Korea. Poult. Sci., 91: 2370-2375.

Landers, T.F., B. Cohen, T.E. Wittum and E.L. Larson, 2012. A review of antibiotic use in food animals: Perspective, policy and potential. Public Health Rep., 127: 4-22.

Le Bouquin, S., V. Allain, S. Rouxel, I. Petetin, M. Picherot, V. Michel and M. Chemaly, 2010. Prevalence and risk factors for Salmonella spp. contamination in French broiler-chicken flocks at the end of the rearing period. Prev. Vet. Med., 97: 245-251.

Lu, Y., H. Zhao, J. Sun, Y. Liu and X. Zhou et al., 2014. Characterization of multidrug-resistant Salmonella enterica serovars indiana and enteritidis from chickens in eastern China. PLoS ONE, Vol. 9.

Madhulika, U., B.N. Harish and S.C. Parija, 2004. Current pattern in antimicrobial susceptibility of Salmonella Typhi isolates in Pondicherry. Indian J. Med. Res., 120: 111-114.

Malek, M.M., F.A. Amer, A.A. Allam, R.H. El-Sokkary, T. Gheith and M.A. Arafa, 2015. Occurrence of classes I and II integrons in Enterobacteriaceae collected from Zagazig university hospitals, Egypt. Front. Microbiol., Vol. 6.

Mazel, D., 2006. Integrons: Agents of bacterial evolution. Nat. Rev. Microbiol., 4: 608-620.

Mihaiu, L., A. Lapusan, R. Tanasuica, R. Sobolu, R. Mihaiu, O. Oniga and M. Mihaiu, 2014. First study of Salmonella in meat in Romania. J. Infect. Dev. Countries, 8: 50-58.

Mollenhorst, H., C.J. van Woudenbergh, E.G.M. Bokkers and I.J.M. de Boer, 2005. Risk factors for Salmonella enteritidis infections in laying hens Poult. Sci., 84: 1308-1313.

Namata, H., E. Meroc, M. Aerts, C. Faes, J.C. Abrahantes, H. Imberechts and K. Mintiens, 2008. Salmonella in belgian laying hens: An identification of risk factors. Prev. Vet. Med., 83: 323-336.

Paterson, D.L., 2006. Resistance in gram-negative bacteria: Enterobacteriaceae. Am. J. Med., 119: S20-S28.

Rostagno, M.H., I.V. Wesley, D.W. Trampel and H.S. Hurd, 2006. Salmonella prevalence in market-age Turkeys on-farm and at slaughter. Poult. Sci., 85: 1838-1842.

Rowe-Magnus, D.A., A.M. Guerout and D. Mazel, 2002. Bacterial resistance evolution by recruitment of super-integron gene cassettes. Mol. Microbiol., 43: 1657-1669.

Sallam, K.I., M.A. Mohammed, M.A. Hassan and T. Tamura, 2014. Prevalence, molecular identification and antimicrobial resistance profile of Salmonella serovars isolated from retail beef products in Mansoura, Egypt. Food Control, 38: 209-214.

Samanta, I., S.N. Joardar, P.K. Das, T.K. Sar, S. Bandyopadhyay, T.K. Dutta and U. Sarkar, 2014. Prevalence and antibiotic resistance profiles of Salmonella serotypes isolated from backyard poultry flocks in West Bengal, India. J. Applied Poult. Res., 23: 536-545.

Shahada, F., T. Chuma, K. Okamoto and M. Sueyoshi, 2008. Temporal distribution and genetic fingerprinting of Salmonella in broiler flocks from Southern Japan. Poult. Sci., 87: 968-972.

Shrestha, A., P. Regmi and R.K. Dutta, 2010. First report of antimicrobial resistance of Salmonella isolated from poultry in Nepal. Vet. Microbiol., 144: 522-524.

Singer, R.S. and C.L. Hofacre, 2006. Potential impacts of antibiotic use in poultry production. Avian Dis., 50: 161-172.

Siu, L.K., J.Y.C. Lo, K.Y. Yuen, P.Y. Chau, M.H. Ng and P.L. Ho, 2000. β-Lactamases in Shigella flexneri isolates from Hong Kong and Shanghai and a novel OXA-1-like β-lactamase, OXA-30. Antimicrob. Agents Chemother., 44: 2034-2038.

Sow, A.G., A.A. Wane, M.H. Diallo, C.S.B. Boye and A. Aidara-Kane, 2007. Genotypic characterization of antibiotic-resistant Salmonella enteritidis isolates in Dakar, Senegal. J. Infect. Dev. Countries, 1: 284-288.

Srinivasan, P., G.A. Balasubramaniam, T.R.G.K. Murthy, S. Saravanan and P. Balachandran, 2014. Prevalence and pathology of salmonellosis in commercial layer chicken from Namakkal, India. Pak. Vet. J., 34: 324-328.

Trampel, D.W., T.G. Holder and R.K. Gast, 2014. Integrated farm management to prevent Salmonella Enteritidis contamination of eggs. J. Applied Poult. Res., 23: 353-365.

Volkova, V.V., R.W. Wills, S.A. Hubbard, D. Magee, J.A. Byrd and R.H. Bailey, 2011. Associations between vaccinations against protozoal and viral infections and Salmonella in broiler flocks. Epidemiol. Infect., 139: 206-215.

Weill, F.X., M. Demartin, D. Tande, E. Espie, I. Rakotoarivony and P.A. Grimont, 2004. SHV-12-like extended-spectrum-β-lactamase-producing strains of Salmonella enterica serotypes Babelsberg and Enteritidis isolated in France among infants adopted from Mali. J. Clin. Microbiol., 42: 2432-2437.

White, P.A., C.J. McIver and W.D. Rawlinson, 2001. Integrons and gene cassettes in the Enterobacteriaceae. Antimicrob. Agents Chemother., 45: 2658-2661.

Yildirim, Y., Z. Gonulalan, S. Pamuk and N. Ertas, 2011. Incidence and antibiotic resistance of Salmonella spp. on raw chicken carcasses. Food Res. Int., 44: 725-728.

Zhao, S., S. Qaiyumi, S. Friedman, R. Singh and S.L. Foley et al., 2003. Characterization of Salmonella enterica serotype newport isolated from humans and food animals. J. Clin. Microbiol., 41: 5366-5371.

Downloads

Published

2015-12-15

Issue

Section

Research Article

How to Cite

Halawa, M., Moawad, A., Eldesouky, I., & Ramadan , H. (2015). Detection of Antimicrobial Phenotypes, β-Lactamase Encoding Genes and Class I Integrons in Salmonella Serovars Isolated from Broilers. International Journal of Poultry Science, 15(1), 1–7. https://doi.org/10.3923/ijps.2016.1.7