Rapid Detection of Campylobacter jejuni in Poultry Products Using Quantum Dots and Nanobeads Based Fluorescent Immunoassay


Authors

  • Hong Wang Department of Poultry Science, University of Arkansas, Fayetteville, AR-72701, USA
  • Yanbin Li Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR-72701, USA
  • Michael Slavik Department of Poultry Science, University of Arkansas, Fayetteville, AR-72701, USA

DOI:

https://doi.org/10.3923/ijps.2014.253.259

Keywords:

Campylobacter detection, Immunoassay, magnetic nanobeads, quantum dots

Abstract

Campylobacter jejuni causes 2.1 to 2.4 million cases of foodborne illnesses in the United States each year with some of the cases linked to eating undercooked poultry or handling raw poultry and poultry products. Thus, a rapid, specific method is needed to detect C. jejuni on poultry and poultry products. The objective of this research was to develop a sensitive immunoassay method for rapid detection of C. jejuni by using both magnetic nanobeads to separate and concentrate the target bacteria and quantum dots (QDs) as fluorescent markers. In this research, both streptavidin conjugated QDs 620 (8 nm diameter) and magnetic nanobeads (150 nm diameter) were separately coated with the specific biotin conjugated anti-C. jejuni antibody. The conjugated magnetic nanobeads then were mixed with a sample containing C. jejuni. After immunomagnetic separation, the magnetic nanobeads-C. jejuni conjugates were mixed with the conjugated QDs. Then, unattached conjugated QDs were removed using immunomagnetic separation. A spectrometer was used to measure the fluorescence of the complexes of magnetic beads-C. jejuni-QDs. The results showed that this method could detect C. jejuni in pure culture, ground turkey, chicken juice or chicken carcass wash solution at concentrations down to 2-3 cells/0.1 mL sample (20-30 cfu/mL). The total detection time was less than 2 h. This study would provide the poultry industry a more effective rapid method for detection of major foodborne pathogens in poultry products to ensure food safety.

References

Birk, T., H. Ingmer, M.T. Andersen, K. Jorgensen and L. Brondsted, 2004. Chicken juice, a food-based model system suitable to study survival of Campylobacter jejuni. Lett. Applied Microbiol., 38: 66-71.

Bruchez, M., M. Moronne, P. Gin, S. Weiss and A.P. Alivisatos, 1998. Semiconductor nanocrystals as fluorescent biological labels. Science, 281: 2013-2016.

CDCP, 2010. Campylobacter. Centers for Disease Control and Prevention (CDCP), National Center for Emerging and Zoonotic Infectious Diseases. http://www.cdc.gov/nczved/divisions/dfbmd/diseases/campylobacter/.

CDC., 2012. Trends in foodborne illness, 1996-2010. http://www.cdc.gov/foodborneburden/PDFs/Trends-in-Foodborne-Illness-1996-2010-508c.pdf.

Chalmers, N.I., R.J. Palmer, L. Du-Thumm, R. Sullivan, W. Shi and P.E. Kolenbrander, 2007. Use of quantum dot luminescent probes to achieve single-cell resolution of human oral bacteria in biofilms. Applied Environ. Microbiol., 73: 630-636.

Chan, W.C. and S. Nie, 1998. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 281: 2016-2018.

Chen, L. and J. Zhang, 2012. Bioconjugated magnetic nanoparticles for rapid capture of gram-positive bacteria. J. Biosens. Bioelectron. Vol. 11.

Clark, M., 2013. Salmonella-Foodborne Illness. Outbreak, Inc., San Francisco, CA.

Debretsion, A., T. Habtemariam, S. Wilson, D. Nganwa and T. Yehualaeshet, 2007. Real-time PCR assay for rapid detection and quantification of Campylobacter jejuni on chicken rinses from poultry processing plant. Mol. Cell. Prob., 21: 177-181.

Gao, J., H. Gu and B. Xu, 2009. Multifunctional magnetic nanoparticles: Design, synthesis and biomedical applications. Accoun. Chem. Res., 42: 1097-1107.

Goransson, J., T.Z.G. de la Torre, M. Stromberg, C. Russell, P. Svedlindh, M. Stromme and M. Nilsson, 2010. Sensitive detection of bacterial DNA by magnetic nanoparticles. Anal. Chem., 82: 9138-9140.

Gu, H.W., K.M. Xu, C.J. Xu and B. Xu, 2006. Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem. Commun., 9: 941-949.

Hahn, M.A., J.S. Tabb and T.D. Krauss, 2005. Detection of single bacterial pathogens with semiconductor quantum dots. Anal. Chem., 77: 4861-4869.

Jaiswal, J.K., H. Mattoussi, J.M. Mauro and S.M. Simon, 2003. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol., 21: 47-51.

Jaiswal, J.K. and S.M. Simon, 2004. Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Bio., 14: 497-504.

Joo, J., C. Yim, D. Kwon, J. Lee, H.H. Shin, H.J. Cha and S. Jeon, 2012. A facile and sensitive detection of pathogenic bacteria using magnetic nanoparticles and optical nanocrystal probes. Analyst, 137: 3609-3612.

Kloepfer, J.A., R.E. Mielke and J.L. Nadeau, 2005. Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. Applied Environ. Microbiol., 5: 2548-2557.

LaGier, M.L., L.A. Joseph, T.V. Passaretti, K.A. Musser and N.M. Cirino, 2004. A real-time multiplexed PCR assay for rapid detection and differentiation of Campylobacter jejuni and Campylobacter coli. Molecul. Cell. Prob., 18: 275-282.

Leblanc-Maridor, M., F. Beaudeau, H. Seegers, M. Denis and C. Belloc, 2011. Rapid identification and quantification of Campylobacter coli and Campylobacter jejuni by real-time PCR in pure cultures and in complex samples. BMC Microbiol., Vol. 11.

Lekowska-Kochaniak, A., D. Czajkowska and J. Popowski, 2002. Detection of Escherichia coli O157: H7 in raw meat by immunomagnetic separation and multiplex PCR. Acta Microbiologica Polonica, 51: 327-337.

Lin, S., X. Wang, H. Zheng, Z. Mao, Y. Sun and B. Jiang, 2008. Direct detection of Campylobacter jejuni in human stool samples by real-time PCR. Can. J. Microbiol., 54: 742-747.

Liu, Y., J. Ye and Y. Li, 2003. Rapid detection of Escherichia coli O157: H7 inoculated in ground beef, chicken carcass and lettuce samples with an immunomagnetic chemiluminescence fiber-optic biosensor. J. Food Prot., 66: 512-517.

Mayr, A.M., S. Lick, J. Bauer, D. Tharigen, U. Busch and I. Huber, 2010. Rapid detection and differentiation of Campylobacter jejuni, Campylobacter coli and Campylobacter lari in food, using multiplex real-time PCR. J. Food. Prot., 2: 241-250.

Melero, B., L. Cocolin, K. Rantsiou, I. Jaime and J. Rovira, 2011. Comparison between conventional and qPCR methods for enumerating Campylobacter jejuni in a poultry processing plant. Food Microbiol., 28: 1353-1358.

Oliveira, T.C.R.M., S. Barbut and M.W. Griffiths, 2005. Detection of Campylobacter jejuni in naturally contaminated chicken skin by melting peak analysis of amplicons in real-time PCR. Int. J. Food Microbiol., 104: 105-111.

Sails, A.D., A.J. Fox, F.J. Bolton, D.R. Wareing and D.L.A. Greenway, 2003. A real-time PCR assay for the detection of Campylobacter jejuni in foods after enrichment culture. Applied Environ. Microbiol., 69: 1383-1390.

Shao, L., Y. Gao and F. Yan, 2011. Semiconductor quantum dots for biomedical applications. Sensor, 11: 11736-11751.

Su, X.L. and Y. Li, 2004. Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. Anal. Chem., 76: 4806-4810.

Tholozan, J.L., J.M. Cappelier, J.P. Tissier, G. Delattre and M. Federighi, 1999. Physiological characterization of viable-but-nonculturable Campylobacter jejuni cells. Applied Environ. Microbiol., 65: 1110-1116.

Varshney, M. and Y. Li, 2007. Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples. Biosens. Bioelectron., 22: 2408-2414.

Wang, H., Y. Li and M.F. Slavik, 2007. Rapid detection of Listeria monocytogenes using quantum dots and nanobeads-based optical biosensor. J. Rapid Meth. Auto. Microbiol., 15: 67-76.

Wang, H., Y. Li and M.F. Slavik, 2011. Rapid detection of Listeria monocytogenes in different food samples using magnetic nanobeads and quantum dots based fluorescent immunoassay. Biol. Eng. Trans., 4: 183-194.

Wang, H., Y. Li, A. Wang and M.F. Slavik, 2011. Rapid, sensitive and simultaneous detection of three foodborne pathogens using magnetic nanobead-based immunoseparation and quantum dot-based multiplex immunoassay. J. Food Protect®., 74: 2039-2047.

Wang, Q., F. Ye, T. Fang, W. Niu, P. Liu, X. Min and X. Li, 2011. Bovine serum albumin-directed synthesis of biocompatible CdSe quantum dots and bacteria labeling. J. Coll. Interface Sci., 355: 9-14.

Xue, X., J. Pan, H. Xie, J. Wang and S. Zhang, 2009. Fluorescence detection of total count of Escherichia coli and Staphylococcus aureus on water-soluble CdSe quantum dots coupled with bacteria. Talanta, 77: 1808-1813.

Yang, L. and Y. Li, 2005. Quantum dots as fluorescent labels for quantitative detection of Salmonella Typhimurium in chicken carcass wash water. J. Food Prot., 68: 1241-1245.

Yang, L. and Y. Li, 2006. Simultaneous detection of Escherichia coli O157∶H7 and Salmonella Typhimurium using quantum dots as fluorescence labels. Analyst, 131: 394-401.

Ziprin, R.L., R.E. Droleskey, M.E. Hume and R.B. Harvey, 2003. Failure of viable nonculturable Campylobacter jejuni to colonize the cecum of newly hatched leghorn chicks. Avian Dis., 47: 753-758.

Downloads

Published

2014-04-15

Issue

Section

Research Article

How to Cite

Wang , H., Li, Y., & Slavik, M. (2014). Rapid Detection of Campylobacter jejuni in Poultry Products Using Quantum Dots and Nanobeads Based Fluorescent Immunoassay. International Journal of Poultry Science, 13(5), 253–259. https://doi.org/10.3923/ijps.2014.253.259