Correlation Between Environmental and Intestinal Clostridium perfringens Isolated from Different Chicken Flocks
DOI:
https://doi.org/10.3923/ijps.2023.90.98Keywords:
<i>Clostridium perfringens</i>, animal health, antimicrobial resistance, chicken flocks, cPCR, necrotic enteritis, RAPD, toxinsAbstract
Background and Objective: Clostridium perfringens is a major enteric pathogen of poultry causing necrotic enteritis (NE). Both clinical and subclinical forms of NE are associated with a huge economic loss, so it is very important to detect and study the correlation between environmental and intestinal C. perfringens isolated from different origins in poultry farms. Materials and Methods: A total of 20 intestinal samples were collected from 20 different commercially diseased poultry flock in Egypt, as well as 10 environmental samples from 10 of the 20 farms that had clinical NE. Statistical package for the social sciences was used for cluster analysis and dendrogram construction. Similarity index between all samples was calculated using the online tool. Results: The bacterial susceptibility patterns of both environmental and intestinal isolates showed high resistance index of 100% against streptomycin sulphate, sulfamethoxazole+trimethoprim, tetracycline and spectinomycin. The resistance reached 70 and 100% to ampicillin and cefotaxime: 50 and 80% to amoxicillin: 65 and 70% to bacitracin for intestinal and environmental C. perfringens isolates, respectively, while the lowest resistance (27%) was to penicillin V. Using cPCR, all isolates carried α toxin gene, while 60 and 25% of intestinal C. perfringens harbored netβ and β-lactamase (bla), meanwhile, 40 and 60% of environmental C. perfringens were positive for netβ and bla genes, respectively. Conclusion: The results of RAPD analysis, similarity index and dendrograms for 4 environmental and intestinal C. perfringens isolates (with bla gene) showed high similarity mainly with the same ancestor of environmental origin, which may explained that contamination with C. perfringens in the environment acts as a source of horizontal bla gene transfer between different C. perfringens strains within poultry farms.
References
Broom, L.J., 2017. Necrotic enteritis; Current knowledge and diet-related mitigation. World's Poult. Sci. J., 73: 281-292.
Ahaduzzaman, M., C. Keerqin, A. Kumar, S. Musigwa and N. Morgan et al., 2020. Detection and quantification of Clostridium perfringens and Eimeria spp. in poultry dust using real-time PCR under experimental and field conditions. Avian Dis., 65: 77-85.
Van Immerseel, F., J. De Buck, F. Pasmans, G. Huyghebaert, F. Haesebrouck and R. Ducatelle, 2004. Clostridium perfringens in poultry: An emerging threat for animal and public health. Avian Pathol., 33: 537-549.
El-Hack, M.E.A., M.T. El-Saadony, A.R. Elbestawy, N.A. El-Shall and A.M. Saad et al., 2022. Necrotic enteritis in broiler chickens: Disease characteristics and prevention using organic antibiotic alternatives-A comprehensive review. Poult. Sci., Vol. 101.
Moore, R.J., 2016. Necrotic enteritis predisposing factors in broiler chickens. Avian Pathol., 45: 275-281.
Popoff, M.R., 2015. From saprophytic to toxigenic clostridia, a complex evolution based on multiple diverse genetic transfers and/or rearrangements. Res. Microbiol., 166: 221-224.
Boulianne, M., F.A. Uzal and K. Opengart, 2019. Clostridial Diseases. In: Diseases of Poultry, Swayne, D.E., M. Boulianne, C.M. Logue, L.R. McDougald and V. Nair et al. (Eds.), John Wiley & Sons, Inc., Hoboken, New Jersey, ISBN: 9781119371168, pp: 966-994.
Nayel, M., A. El-Sify, S. Akram, M. Allaam, E. Abdeen and H. Hassan, 2013. Molecular typing of clostridium perfringens isolates from soil, healthy, and diseased sheep in Egypt by multiplex PCR. J. Vet. Med. Res., 22: 53-57.
Li, J., D. Paredes-Sabja, M.R. Sarker and B.A. McClane, 2016. Clostridium perfringens sporulation and sporulation-associated toxin production. Microbiol. Spectrum, Vol. 4.
Martin, T.G. and J.A. Smyth, 2009. Prevalence of netB among some clinical isolates of Clostridium perfringens from animals in the United States. Vet. Microbiol., 136: 202-205.
Quinn, P.J., B.K. Markey, F. Leonard, P. Hartigan, S. Fanning and E. FitzPatrick, 2013. Veterinary Microbiology and Microbial Disease. 2nd Edn., Wiley, New York, ISBN-13: 9781118251171, Pages: 928.
Wu, D., R. Luo, G. Gong, L. Zhang and J. Huang et al., 2022. Antimicrobial susceptibility and multilocus sequence typing of Clostridium perfringens isolated from yaks in Qinghai-Tibet Plateau, China. Front. Vet. Sci., Vol. 9.
Kanakaraj, R., D.L. Harris, J.G. Songer and B. Bosworth, 1998. Multiplex PCR assay for detection of Clostridium perfringens in feces and intestinal contents of pigs and in swine feed. Vet. Microbiol., 63: 29-38.
Yoo, H.S., S.U. Lee, K.Y. Park and Y.H. Park, 1997. Molecular typing and epidemiological survey of prevalence of Clostridium perfringens types by multiplex PCR. J. Clin. Microbiol., 35: 228-232.
Bailey, M.A., K.S. Macklin and J.T. Krehling, 2013. Use of a multiplex PCR for the detection of toxin-encoding genes netB and tpeL in strains of Clostridium perfringens. ISRN Vet. Sci., Vol. 2013.
Catalán, A., M.C. Espoz, W. Cortés, H. Sagua, J. González and J.E. Araya, 2010. Tetracycline and penicillin resistant Clostridium perfringens isolated from the fangs and venom glands of Loxosceles laeta: Its implications in loxoscelism treatment. Toxicon, 56: 890-896.
Xiao, Y., A. Wagendorp, R. Moezelaar, T. Abee and M.H.J. Wells-Bennik, 2012. A wide variety of Clostridium perfringens type a food-borne isolates that carry a chromosomal cpe gene belong to one multilocus sequence typing cluster. Applied Environ. Microbiol., 78: 7060-7068.
Hunter, P.R., 1990. Reproducibility and indices of discriminatory power of microbial typing methods. J. Clin. Microbiol., 28: 1903-1905.
Parish, W.E., 1961. Necrotic enteritis in the fowl (Gall Us Gall Us D Omes Ticus): I. histopathology of the disease and isolation of a strain of Clostridium welchii J. Comp. Pathol. Ther., 71: 377-IN33.
Kiu, R. and L.J. Hall, 2018. An update on the human and animal enteric pathogen Clostridium perfringens. Emerging Microbes Infec., Vol. 7.
Antonissen, G., F.V. Immerseel, F. Pasmans, R. Ducatelle and F. Haesebrouck et al., 2014. The mycotoxin deoxynivalenol predisposes for the development of Clostridium perfringens-induced necrotic enteritis in broiler chickens. PLoS ONE, Vol. 9.
Li, C., X. Yan and H.S. Lillehoj, 2017. Complete genome sequences of Clostridium perfringens Del1 strain isolated from chickens affected by necrotic enteritis. Gut Pathog., Vol. 9.
Osman, K.M. And M. Elhariri, 2013. Antibiotic resistance of clostridium perfringens isolates from broiler chickens in Egypt. Rev. Sci. Tech. l'OIE, 32: 841-850.
Salah-Eldin, A.E.H.H., E.H. Fawzy, B.A. Aboelmagd, E.A. Ragab and B. Shaimaa, 2015. Clinical and laboratory studies on chicken isolates of clostridium perfringens in El-Behera, Egypt. J. World's Poult. Res., 5: 21-28.
Shaaban, A., S.A. Zoulfakar, Y.I. Youssef and B. Shalaby, 2017. The incidence of C. perfringens in chickens in different seasons and governorates in Egypt. J. Vet. Med. Res., 24: 12-20.
Mwangi, S., J. Timmons, S. Fitz-coy and S. Parveen, 2019. Characterization of Clostridium perfringens recovered from broiler chicken affected by necrotic enteritis. Poult. Sci., 98: 128-135.
Gadbois, P., J.J. Brennan, H.L. Bruce, J.B. Wilson and J.J. Aramini, 2008. The role of penicillin G potassium in managing Clostridium perfringens in broiler chickens. Avian Dis., 52: 407-411.
Smedley, J.G., D.J. Fisher, S. Sayeed, G. Chakrabarti and B.A. McClane, 2004. The enteric toxins of Clostridium perfringens. Rev. Physiol., Biochem. Pharmacol., 152: 183-204.
Uzal, F.A., J.E. Vidal, B.A. McClane and A.A. Gurjar, 2010. Clostridium perfringens toxins involved in mammalian veterinary diseases. Open Toxinol. J., 2: 24-42.
Engstrom, B.E., C. Fermer, A. Lindberg, E. Saarinen, V. Baverud and A. Gunnarsson, 2003. Molecular typing of isolates of Clostridium perfringens from healthy and diseased poultry. Vet. Microbiol., 94: 225-235.
Keyburn, A.L., J.D. Boyce, P. Vaz, T.L. Bannam and M.E. Ford et al., 2008. NetB, a new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens. PLoS Pathog., Vol. 4.
Abildgaard, L., T.E. Sondergaard, R.M. Engberg, A. Schramm and O. Højberg, 2010. In vitro production of necrotic enteritis toxin B, NetB, by netB-positive and netB-negative Clostridium perfringens originating from healthy and diseased broiler chickens. Vet. Microbiol., 144: 231-235.
Savva, C.G., S.P.F. da Costa, M. Bokori-Brown, C.E. Naylor and A.R. Cole et al., 2013. Molecular architecture and functional analysis of NetB, a pore-forming toxin from Clostridium perfringens. J. Bio. Chem., 288: 3512-3522.
Rood, J.I., V. Adams, J. Lacey, D. Lyras and B.A. McClane et al., 2018. Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe, 53: 5-10.
Johansson, A., A. Aspan, M. Kaldhusdal and B.E. Engstrom, 2010. Genetic diversity and prevalence of netB in Clostridium perfringens isolated from a broiler flock affected by mild necrotic enteritis. Vet. Microbiol., 144: 87-92.
Kiu, R., J. Brown, H. Bedwell, C. Leclaire and S. Caim et al., 2019. Genomic analysis on broiler-associated Clostridium perfringens strains and exploratory caecal microbiome investigation reveals key factors linked to poultry necrotic enteritis. Anim. Microbiome, Vol. 1.
Profeta, F., C.E. Di Francesco, A. Di Provvido, M. Scacchia and A. Alessiani et al., 2019. Prevalence of netB-positive Clostridium perfringens in Italian poultry flocks by environmental sampling J. Vet. Diagn. Invest., 32: 252-258.
Keyburn, A.L., R.W. Portela, M.E. Ford, T.L. Bannam, X.X. Yan, J.I. Rood and R.J. Moore, 2013. Maternal immunization with vaccines containing recombinant NetB toxin partially protects progeny chickens from necrotic enteritis. Vet. Res., Vol. 44.
Afshari, A., A. Jamshidi, J. Razmyar and M. Rad, 2016. Genomic diversity of Clostridium perfringens strains isolated from food and human sources. Iran. J. Vet. Res., 17: 160-164.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 The Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.