Meta-Analysis of Commercial-Scale Trials as a Means to Improve Decision-Making Processes in the Poultry Industry: A Phytogenic Feed Additive Case Study


Authors

  • Diego A. Martinez Department of Nutrition, Universidad Nacional Agraria La Molina, Lima, Peru
  • Carol L. Ponce-de-Leon Independent Researcher, Lima, Peru
  • Carlos Vilchez Department of Nutrition, Universidad Nacional Agraria La Molina, Lima, Peru

DOI:

https://doi.org/10.3923/ijps.2020.513.523

Keywords:

Commercial trial, hytogenic feed additive, meta-analysis, poultry industry, statistical power

Abstract

Background and Objective: In the current study, we sought to determine the value of a meta-analysis to improve decision-making processes related to nutrition in the poultry industry. To this end, nine commercial size experiments were conducted to test the effect of a phytogenic feed additive and three approaches were applied to the data. Materials and Methods: In all experiments, 1-day-old male Cobb 500 chicks were used and fed corn-soybean meal diets. Two dietary treatments were tested: T1, control diet and T2, control diet + feed additive at a 0.05% inclusion rate. The experimental units were broiler houses (7 experiments), floor pens (1 experiment) and cages (1 experiment). The response variables were final body weight, feed intake, feed conversion ratio, mortality and production efficiency. Analyses of variance of data from each and all the experiments were performed using SAS under completely randomized non-blocked or blocked designs, respectively. The meta-analyses were performed in R programming language. Results: No statistically significant effects were found in the evaluated variables in any of the independent experiments (p>0.12), nor following the application of a block design (p>0.08). The meta-analyses showed no statistically significant global effects in terms of final body weight (p>0.19), feed intake (p>0.23), mortality (p>0.09), or European Production Efficiency Factor (p>0.08); however, a positive global effect was found with respect to feed conversion ratio (p<0.046). Conclusion: This meta-analysis demonstrated that the phytogenic feed additive improved the efficiency of birds to convert feed to body weight (35 g less feed per 1 kg of body weight obtained). Thus, the use of meta-analyses in commercial-scale poultry trials can increase statistical power and as a result, help to detect statistical differences if they exist.

References

Aviagen, 2011. Optimizing Broiler Feed Conversion Ratio. Arbor Acres service bulletin 0711-AVNAA-029

Willems, O.W., S.P. Miller and B.J. Wood, 2013. Aspects of selection for feed efficiency in meat producing poultry. World's Poult. Sci. J., 69: 77-88.

Maharjan, P., J. Weil, A. Beitia, N. Suesuttajit and K. Hilton et al., 2020. In vivo collagen and mixed muscle protein turnover in 2 meat-type broiler strains in relation to woody breast myopathy. Poult. Sci.

Maharjan, P., G. Mullenix, K. Hilton, A. Beitia and J. Weil et al., 2020. Effects of dietary amino acid levels and ambient temperature on mixed muscle protein turnover in Pectoralis major during finisher feeding period in two broiler lines. J. Anim. Physiol. Anim. Nutr.

Rostagno, H., L. Páez and L. Albino, 2007. Nutrient Requirements of Broilers for Optimum Growth and Lean Mass. Proceeding of 16th European Nutrition Symposium on Poultry Nutrition. August 26-30, 2007 91-98.

Zhang, B., J. Weil, A.B. Guerra, P. Maharjan and K. Hilton et al, 2020. Egg shell quality and bone status as affected by environmental temperature, ca and non-phytate p intake and In vitro limestone solubility in single-comb white leghorn hens. Int. J. Poult. Sci., 19: 219-231.

IRTA, 2015. Review of immune stimulator substances/agents that are susceptible of being used as feed additives: mode of action and identification of end‐points for efficacy assessment. EFSA supporting publication, Catalonia, Spain Pages: 266.

Russo, M., G.C. Galletti, P. Bocchini and A. Carnacini, 1998. Essential oil chemical composition of wild populations of Italian oregano spice (Origanum vulgare ssp. hirtum (Link) Ietswaart): A preliminary evaluation of their use in chemotaxonomy by cluster analysis. 1. inflorescences. J. Agric. Food Chem., 46: 3741-3746.

Helander, I.M., H.L. Alakomi, K. Latva-Kala, T. Mattila-Sandholm and I. Pol et al., 1998. Characterization of the action of selected essential oil components on gram-negative bacteria. J. Agric. Food Chem., 46: 3590-3595.

Lee, K.W., H. Everts and A.C. Beynen, 2004. Essential oils in broiler nutrition. Int. J. Poult. Sci., 3: 738-752.

Deighton, N., S.M. Glidewell, S.G. Deans and B.A. Goodman, 1993. Identification by epr spectroscopy of carvacrol and thymol as the major sources of free radicals in the oxidation of plant essential oils. J. Sci. Food Agric., 63: 221-225.

Mathe, A., 2009. Essential Oils: Biochemistry, Production and Utilisation. In: Phytogenics in Animal Nutrition: Natural Concepts to Optimize Gut Health and Performance, Steiner, T. (Ed.). Nottingham University Press, England, ISBN: 9781904761716.

Applegate, T.J., V. Klose, T. Steiner, A. Ganner and G. Schatzmayr, 2010. Probiotics and phytogenics for poultry: Myth or reality? J. Applied Poult. Res., 19: 194-210.

Malayoglu, H.B., S. Baysal, Z. Misirlioglu, M. Polat, H. Yilmaz and N. Turan, 2010. Effects of oregano essential oil with or without feed enzymes on growth performance, digestive enzyme, nutrient digestibility, lipid metabolism and immune response of broilers fed on wheat-soybean meal diets. Br. Poult. Sci., 51: 67-80.

Dorman, H.J.D. and S.G. Deans, 2000. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol., 88: 308-316.

Levkut, M., A. Marcin, V. Revajova, L. Lenhardt and I. Danielovic et al., 2011. Influence of oregano extract on the intestine, some plasma parameters and growth performance in chickens. Acta Vet. Beograd., 61: 215-225.

Giannenas, I., P. Florou-Paneri, M. Papazahariadou, E. Christaki, N.A. Botsoglou, and A.B. Spais, 2003. Effect of dietary supplementation with oregano essential oil on performance of broilers after experimental infection with Eimeria tenella. Arch. Anim. Nutr., 57: 99-106.

Mohiti-Asli, M. and R.M. Ghanaatparast, 2015. Dietary oregano essential oil alleviates experimentally induced coccidiosis in broilers. Preventive Vet. Med., 120: 195-202.

Fukayama, E.H., A.G. Bertechini, A. Geraldo, R.K. Kato and L.D.S. Murgas, 2005. Extrato de orégano como aditivo em rações para frangos de corte. Rev. Bras. Zootecnia, 34: 2316-2326.

Baser, K.H.C., 2002. Aromatic biodiversity among the flowering plant taxa of Turkey. Pure Applied Chem., 74: 527-545.

Murugesan, G.R., N.K. Gabler and M.E. Persia, 2014. Effects of direct-fed microbial supplementation on broiler performance, intestinal nutrient transport and integrity under experimental conditions with increased microbial challenge. Br. Poult. Sci., 55: 89-97.

Shim, M.Y. and G.M. Pesti, 2014. The use of a pen-size optimization workbook for experiment research design using the visual basic for applications in excel for poultry. J. Applied Poult. Res., 23: 315-322.

Demétrio, C.G.B., J.F.M. Menten, R.A. Leandro and C. Brien, 2013. Experimental power considerations—Justifying replication for animal care and use committees. Poult. Sci., 92: 2490-2497.

Cohn, L.D. and J.B. Betsy, 2003. How meta-analysis increases statistical power. Psychol. Methods, 8: 243-253.

Borenstein, M., L.V. Hedges, J.P.T. Higgins and H.R. Rothstein, 2009. Power Analysis for Meta‐Analysis. In: Introduction to Meta‐Analysis. Borenstein, M., L.V. Hedges, J.P.T. Higgins and H.R. Rothstein (Eds.). John Wiley & Sons, Ltd Hoboken, New Jersey pp: 257-276.

Cobb-Vantress, 2015. Broiler performance and nutrition supplement. July 2015. http://www.cobb-vantress.com/docs/default-source/cobb-500-guides/Cobb500_Broiler_Performance_And_Nutrition_Supplement.pdf.

Marcu, A., I. Vacaru-Opriș, G. Dumitrescu, L.P. Ciochină and A. Marcu et al., 2013. The influence of genetics on economic efficiency of broiler chickens growth. Anim. Sci. Biotechnol., 46: 339-346.

Petschenka, G., C. Pick, V. Wagschal and S. Dobler, 2013. Functional evidence for physiological mechanisms to circumvent neurotoxicity of cardenolides in an adapted and a non-adapted hawk-moth species. Proc. R. Soc. B, Vol. 280.

Adler, J., 2009. R in a Nutshell: A Desktop Quick Reference. 1st Edn., O’Reilly Media Sebastopol, California.

Grubbs, F.E., 1969. Procedures for detecting outlying observations in samples. Technometrics, 11: 1-21.

McDonald, J.H., 2009. Handbook of Biological Statistics. 2nd Edn., Sparky House Publishing, Baltimore, Maryland, Pages: 313.

Noortgate, V.d., W. Onghena and Patrick, 2003. Multilevel meta-analysis: A comparison with traditional meta-analytical procedures. Educ. Psychol. Meas., 63: 765-790.

Hedges, L.V. and I. Olkin, 1985. Parametric Estimation of Effect Size from a Series of Experiments. In: Statistical Methods for Meta-Analysis. Hedges, L.V. and I. Olkin, Academic Press Inc., United States of America pp: 107-145.

Bougouin, A., J.A.D.R.N. Appuhamy, E. Kebreab, J. Dijkstra, R.P. Kwakkel and J. France, 2014. Effects of phytase supplementation on phosphorus retention in broilers and layers: A meta-analysis. Poult. Sci., 93: 1981-1992.

Motulsky, H.J., 2007. Graphpad prism 5.00 Statistics Guide. GraphPad Software, inc. https://cdn.graphpad.com/faq/2/file/Prism_v5_Statistics_Guide.pdf

SAS, 2017. Base SAS® 9.4 procedures guide. 7th Edn., SAS Institute, Inc., North Carolina, USA Pages: 175.

Viechtbauer, W., 2010. Conducting meta-analyses in R with the metafor package. J. Stat. Software, Vol. 36, No. 3.

R Core Team., 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

RStudio, 2016. RStudio: integrated development for R. RStudio Inc.,. https://rstudio.com

Dawkins, M.S., 2012. Commercial scale research and assessment of poultry welfare. Br. Poult. Sci., 53: 1-6.

Hirshleifer, D., Y. Levi, B. Lourie and S.H. Teoha, 2019. Decision fatigue and heuristic analyst forecasts. J. Financial Econ., 133: 83-98.

Nicholls, N., 2001. The Insignificance of Significance Testing. Bull. Amer. Meteor. Soc., 82: 981-986.

Blackwelder, W.C., 1982. “Proving the null hypothesis” in clinical trials. Controlled Clin. Trials, 3: 345-353.

Dragicevic, P., 2016. Fair Statistical Communication in HCI. In: Modern Statistical Methods for HCI. Robertson, J. and M. Kaptein (Eds.). Springer, Cham Switzerland pp: 291-330.

Chris, O. and W.H. Freeman, 2002. The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century. American Statistical Association United States of America Pages: 650.

Roofchaee, A., M. Irani, M.A. Ebrahimzadeh and M.R. Akbari, 2011. Effect of dietary oregano (Origanum vulgare L.) essential oil on growth performance, cecal microflora and serum antioxidant activity of broiler chickens. Afr. J. Biotechnol., 10: 6177-6183.

Cho, J.H., H.J. Kim and I.H. Kim, 2014. Effects of phytogenic feed additive on growth performance, digestibility, blood metabolites, intestinal microbiota, meat color and relative organ weight after oral challenge with Clostridium perfringens in broilers. Livest. Sci., 160: 82-88.

Ghazi, S., T. Amjadian and S. Norouzi, 2014. Single and combined effects of vitamin C and oregano essential oil in diet, on growth performance and blood parameters of broiler chicks reared under heat stress condition. Int. J. Biometeorol., 58: 741-752.

Peng, Q.Y., J.D. Li, Z. Li, Z.Y. Duan and Y.P. Wu, 2016. Effects of dietary supplementation with oregano essential oil on growth performance, carcass traits and jejunal morphology in broiler chickens. Anim. Feed Sci. Technol., 214: 148-153.

Martinez, D.A., 2012. Evaluación de un producto a base de aceite esencial de orégano sobre la integridad intestinal, la capacidad de absorción de nutrientes y el comportamiento productivo de pollos de carne. Master Thesis, Universidad Nacional Agraria La Molina.

Bregendahl, K., D.U. Ahn, D.W. Trampel and J.M. Campbell, 2005. Effects of dietary spray-dried bovine plasma protein on broiler growth performance and breast-meat yield. J. Applied Poult. Res., 14: 560-568.

Barker, K.J., J.L. Purswell, J.D. Davis, H.M. Parker, M.T. Kidd, C.D. McDaniel and A.S. Kiess, 2010. Distribution of bacteria at different poultry litter depths1. Int. J. Poult. Sci., 9: 10-13.

O’Reilly, E.L., R.J. Burchmore, N.H. Sparks and P.D. Eckersall, 2016. The effect of microbial challenge on the intestinal proteome of broiler chickens. Proteome Sci., Vol. 15, No. 10.

Gaibor, J.R.Q., R. Torres, J. Yupanqui, D.M. Patiño-Patroni and C.V. Perales, 2019. Suplementación alimenticia de glutamina sobre el desempeño productivo en pollos de engorde. Siembra, 6: 15-24.

Campbell, M.K. and D.J. Torgerson, 1999. Bootstrapping: Estimating confidence intervals for cost-effectiveness ratios. Int. J. Med., 92: 177-182.

Martínez, D. and C. Uculmana, 2016. Extracto de alcachofa (Cynara scolymus L.): experiencias de uso en los mercados de producción animal y oportunidades para su producción en Perú [Artichoke extract (Cynara scolymus L.): experiences of use in animal production markets and opportunities for its production in Peru]. Agroind. Sci., 6: 155-161.

Hooge, D.M., J.L. Pierce, K.W. McBride and P.J. Rigolin, 2010. Meta-analysis of laying hen trials using diets with or without allzyme® SSF enzyme complex. Int. J. Poult. Sci., 9: 824-827.

Quisirumbay-Gaibor, J., D.M. Patiño-Patroni and C.V. Perales, 2020. Efecto de la suplementación de selenio sobre el rendimientoproductivo en cerdos: metaanálisis [Effect of selenium supplementation on productive performance in pigs:meta-analysis]. Rev. Inv. Vet. Perú, Vol. 31, No. 1.

Richter, S.H., J.P. Garner, C. Auer, J. Kunert and H. Wurbel, 2010. Systematic variation improves reproducibility of animal experiments. Nat. Methods, 7: 167-168.

Downloads

Published

2020-10-15

Issue

Section

Research Article

How to Cite

Martinez, D. A., Ponce-de-Leon, C. L., & Vilchez, C. (2020). Meta-Analysis of Commercial-Scale Trials as a Means to Improve Decision-Making Processes in the Poultry Industry: A Phytogenic Feed Additive Case Study. International Journal of Poultry Science, 19(11), 513–523. https://doi.org/10.3923/ijps.2020.513.523