Relationship of Thermal Regulation Capacity of Chicks with Breeder age, Breed and Incubator type


Authors

  • Camila S. Oro Department of Clinical Veterinary Medicine (FMVZ-UNESP), Botucatu, SP, Brazil
  • Felipe E. De Souza Departament of Zootecnia (UFPR), Palotina, PR, Brazil
  • Wellyton C. Rodrigues Departament of Biotechnology (UFPR), Palotina, PR, Brazil
  • Elisane L. Milbradt Department of Clinical Veterinary Medicine (FMVZ-UNESP), Botucatu, SP, Brazil
  • Erica C.B.P. Guirro Department of Clinical Veterinary Medicine (UFPR), Veterinary Hospital, Palotina, PR, Brazil
  • Juliana S. Oro Departament of Animal Nutrition, JBS Company, Dourados, MS, Brazil

DOI:

https://doi.org/10.3923/ijps.2019.538.543

Keywords:

Animal welfare, hatchery, incubation, poultry, thermoregulatory system

Abstract

Background and Objective: In chickens, development of the thermoregulatory system during incubation can increase thermal regulation efficiency after hatching and is critical to ensure animal welfare. Several factors, including breeder age, incubator type and breed can all affect thermoregulatory system development. This study evaluated how these factors are related to thermoregulatory system development and how they affect thermal regulation capacity of chicks. Materials and Methods: The experimental design was completely randomized, totaling 12 treatments with 6 replicates each. Each cart inside an incubator served as an experimental unit that contained 5,040 eggs and each type of incubator contained 36 carts. The eggs were derived from Cobb 500 and Ross breeds at three different ages. Results: Chicks produced by young Ross breeders and old Cobb breeders had a lower capacity to remain warm when incubated in a multiple stage incubator and while in the dispatch room. Conclusion: Breed type and breeder age can affect thermoregulatory system development of chicks. A comfortable ambient temperature is needed to ensure appropriate development of chicks.

References

ABPA., 2016. Annual report 2016. Brazilian Association of Animal Protein, Sao Paulo. http://abpa-br.com.br/setores/avicultura/publicacoes/relatorios-anuais/2016.

Barbosa, V.M., 2011. Fisiologia da Incubação e Desenvolvimento Embrionário. 1st Edn., Polysell, Português, Pages: 124.

Shafey, T.M., M.M. Ghannam, H.A. Al-Batshan and M.S. Al-Ayed, 2004. Effect of pigment intensity and region of eggshell on the spectral transmission of light that passes the eggshell of chickens. Int. J. Poult. Sci., 3: 228-233.

Costa, E. 2015. Armazenamento e transporte de pintinhos. https://opresenterural.com.br/armazenamento-e-transporte-de-pintinhos/

Gonzales, E. 2009. Comentário Avícola: incubação. https://www.aviculturaindustrial.com.br/imprensa/incubacao/20090831-081247-y742

Tzschentke, B. and S. Tatge, 2013. Incubação Circadiana®-“Treinamento Térmico“ Embrionário Para a Robustez em Aves. In: Manejo de Incubação, 3rd Edn., Macari, M., E. Gonzales, I.S. Patrício, I.A. Nääs and P.C. Martins, (Eds.)., Chapter 2.4. FACTA., São Paulo, Brazil ISBN: 978-85-89327-06-0, 135.

Loyau, T., C. Berri, L. Bedrani, S. Metayer-Coustard and C. Praud et al., 2013. Thermal manipulation of the embryo modifies the physiology and body composition of broiler chickens reared in floor pens without affecting breast meat processing quality. J. Anim. Sci., 91: 3674-3685.

Piestun, Y., D. Shinder, M. Ruzal, O. Halevy, J. Brake and S. Yahav, 2008. Thermal manipulations during broiler embryogenesis: Effect on the acquisition of thermotolerance. Poult. Sci., 87: 1516-1525.

Tzschentke, B. and D. Basta, 2002. Early development of neuronal hypothalamic thermosensitivity in birds: Influence of epigenetic temperature adaptation. Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol., 131: 825-832.

Shinder, D., M. Ruzal, M. Giloh, S. Druyan, Y. Piestun and S. Yahav, 2011. Improvement of cold resistance and performance of broilers by acute cold exposure during late embryogenesis. Poult. Sci., 90: 633-641.

Janke, O., B. Tzschentke, J. Hochel and M. Nichelmann, 2002. Metabolic responses of chicken and muscovy duck embryos to high incubation temperatures. Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol., 131: 741-750.

Yahav, S., A. Collin, D. Shinder and M. Picard, 2004. Thermal manipulations during broiler chick embryogenesis: Effects of timing and temperature. Poult. Sci., 83: 1959-1963.

Yahav, S., R.S. Rath and D. Shinder, 2004. The effect of thermal manipulations during embryogenesis of broiler chicks (Gallus domesticus) on hatchability, body weight and thermoregulation after hatch. J. Therm. Biol., 29: 245-250.

Collin, A., C. Berri, S. Tesseraud, F.E.R. Rodon and S. Skiba-Cassy et al., 2007. Effects of thermal manipulation during early and late embryogenesis on thermotolerance and breast muscle characteristics in broiler chickens. Poult. Sci., 86: 795-800.

Calil, T.A.C., 2007. Princípios básicos de incubação. Proceedings of the 25th APINCO Poultry Science and Technology Conference, May 29-31, 2007, FACTA., Campinas, pp: 19-45.

Nichelmann, M., O. Janke and B. Tszchentke, 2001. Development of physiological control systems in avian embryos. New Biomed. Sci., 1: 15-25.

Nichelmann, M. and B. Tzschentke, 2002. Ontogeny of thermoregulation in precocial birds. Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol., 131: 751-763.

Nichelmann, M. and B. Tzschentke, 1999. Thermoregulation in precocial avian embryos. Ornis Fennica, 76: 177-187.

Nichelmann, M. and B. Tzschentke, 2003. Efficiency of thermoregulatory control elements in precocial poultry embryos. Avian Poult. Biol. Rev., 14: 1-19.

Hamilton, R.M.G, 1978. Observations on the changes in physical characteristics that influence egg shell quality in ten strains of white leghorns. Poult. Sci., 57: 1192-1197.

Piestun, Y., D. Shinder, M. Ruzal, O. Halevy, J. Brake and S. Yahav, 2008. Thermal manipulations during broiler embryogenesis: Effect on the acquisition of thermotolerance. Poult. Sci., 87: 1516-1525.

Collin, A., L. Bedrani, T. Loyau, S. Mignon-Grasteau and S. Metayer-Coustard et al., 2011. L'acclimatation embryonnaire: Une technique innovante pour limiter les mortalités liées au stress thermique chez le poulet. INRA Prod. Anim., 24: 191-198.

Baião, N.C. and S.V. Cançado, 1997. Fatores que afetam a qualidade da casca do ovo. Caderno Técnico da Escola de Veterinária UFMG, Belo Horizonte: EV-UFMG., No. 21, pp: 43-59.

Decuypere, E., 1994. Incubation temperature and postnatal development. Proceedings of the 9th European Poultry Conference, August 7-12, 1994, World's Poultry Science Association Glasgow, UK., pp: 407-410.

Christensen, V.L., W.E. Donaldson and K.E. Nestor, 1994. Incubation temperature effects on metabolism and survival of Turkey embryos. Proceedings of the 9th European Poultry Conference, August 7-12, 1994, World's Poultry Science Association Glasgow, UK., pp: 399-402.

French, N.A., 2010. What the embryo needs. Proceedings of Incubation, (I’2010), Utrecht, The Netherlands, 1-5.

Collin, A., T. Loyau, L. Bendran, C. Berri and S. Metayer-Coustard et al., 2012. Adaptive response of chickens to hot environments induced by changing incubation temperature. Proceedings of the 24th World's Poultry Congress, August 5-9, 2012, Salvador, Bahia, Brazil, pp: 1-7.

Downloads

Published

2019-10-15

Issue

Section

Research Article

How to Cite

Oro , C. S., Souza, F. E. D., Rodrigues, W. C., Milbradt, E. L., Guirro, E. C., & Oro, J. S. (2019). Relationship of Thermal Regulation Capacity of Chicks with Breeder age, Breed and Incubator type. International Journal of Poultry Science, 18(11), 538–543. https://doi.org/10.3923/ijps.2019.538.543