Phylogenetic Analysis of Duck Species from Tegal Indonesia Using 18S Ribosomal RNA and Mitochondrial COI Gene


Authors

  • Hermin Pancasakti Kusumaningrum Department of Biology, Faculty of Sciences and Mathematic, Diponegoro University, Jl. Prof Sudharto SH. Tembalang Semarang 50275, Indonesia
  • Wahyu Dewi Utari Haryanti Department of Biology, Faculty of Sciences and Mathematic, Diponegoro University, Jl. Prof Sudharto SH. Tembalang Semarang 50275, Indonesia
  • Annisa Rizki Rahayu Department of Biology, Faculty of Sciences and Mathematic, Diponegoro University, Jl. Prof Sudharto SH. Tembalang Semarang 50275, Indonesia

DOI:

https://doi.org/10.3923/ijps.2018.392.404

Keywords:

A. platyrhynchos,, A poecilorhyncha, cytochrome oxidase I,, duck, egg, mitochondrial, ribosomal, nuclear

Abstract

Background and Objective: Tegal duck is a domestic waterfowl species known as a major producer of eggs that is traditionally used for making the famous salted egg by the local people. This study aimed to analyze the phylogenetic relationship of the Tegal duck through the gene encoding 18S ribosomal RNA (rRNA) and mitochondrial cytochrome oxidase I (COI). Methodology: We amplified and sequenced part of the 18S rRNA and COI gene of Tegal duck. These data were used to determine their similarity with other Anas species retrieved from GenBank and analyzing phylogenetic relationship. Results: The size of the PCR product of partial 18S rRNA was approximately 485 bp, whereas the size of the partial mitochondrial DNA (mtDNA) of the COI gene sequence was 751 bp. The 18S rRNA data showed that the Tegal duck is closely related to A. platyrhynchos (84.4% similarity). The COI gene data of the Tegal duck confirmed this relationship, with 99% homology with A. platyrhynchos voucher NHMO-BC399. However, the COI gene fragment of the Tegal duck also showed 99% homology with A. poecilorhyncha. Conclusion: Tegal duck has a close phylogenetic relationship with not only A. platyrhynchos but also A. poecilorhyncha.

References

Tegal City Central Bureau of Statistics, 2015. Agriculture and maritime service of Tegal: Population of poultry by sub district in Tegal year 2013-2015. Tegal City Central Bureau of Statistics, Indonesia.

Johari, S., S. Ekasari and E. Kurnianto, 2013. Genetic variation in three breeds of Indonesian local ducks based on blood and egg white protein polymorphism. J. Indonesian Trop. Anim. Agric., 38: 20-26.

Purwantini, D. and Ismoyowati, 2014. Genetic characteristic of Indonesian local ducks based on single nucleotide polymorphism (SNP) analysis in D-loop region mitochondria DNA. Anim. Prod., 16: 146-155.

Sutiyono, B., Soedarsono, S. Johari and Y.S. Ondho, 2011. [The heterosis effect of multiple appearance of male and female mule ducks]. Bul. Peternakan, 35: 153-159.

Purwantini, D., T. Yuwanta, T. Hartatik and I. Ismoyowati, 2013. Morphology and genetic diversity of mitochondrial DNA D-loop region using PCR-RFLP analysis in magelang duck and other native duck. J. Indonesian Trop. Anim. Agric., 38: 1-9.

Li, H.F., W.Q. Zhu, W.T. Song, J.T. Shu, W. Han and K.W. Chen, 2010. Molecular genetic diversity and origin of Chinese domestic duck breeds. Archiv. Tierzucht., 53: 609-617.

Jin, S.D., M.R. Hoque, D.W. Seo, I.K. Kim, C. Jo, W.K. Paek and J.H. Lee, 2012. Phylogenetic relationships among dabbling duck species in Korea using COI gene variations in mtDNA. J. Poult. Sci., 49: 163-170.

Avise, J.C., C.D. Ankney and W.S. Nelson, 1990. Mitochondrial gene trees and the evolutionary relationship of mallard and black ducks. Evolution, 44: 1109-1119.

Hebert, P.D.N., M.Y. Stoeckle, T.S. Zemlak and C.M. Francis, 2004. Identification of birds through DNA barcodes. PLoS Biol., Vol. 2, No. 10.

Moritz, C., T.E. Dowling and W.M. Brown, 1987. Evolution of animal mitochondrial DNA: Relevance for population biology and systematics. Annu. Rev. Ecol. Syst., 18: 269-292.

Kerr, K.C.R., S.M. Birks, M.V. Kalyakin, Y.A. Red'kin, E.A. Koblik and P.D. Hebert, 2009. Filling the gap-COI barcode resolution in eastern Palearctic birds. Front. Zool., Vol. 6.

Wu, S., J. Xiong and Y. Yu, 2015. Taxonomic resolutions based on 18S rRNA genes: A case study of subclass Copepoda. PLoS One, Vol. 10.

Aquadro, C.F. and B.D. Greenberg, 1983. Human mitochondrial DNA variation and evolution: Analysis of nucleotide sequences from seven individuals. Genetics, 103: 287-312.

Hebert, P.D.N., A. Cywinska, S.L. Ball and J.R. deWaard, 2003. Biological identifications through DNA barcodes. Proc. R. Soc. B: Biol. Sci., 270: 313-321.

Lansman, R.A., J.C. Avise and M.D. Huettel, 1983. Critical experimental test of the possibility of “paternal leakage” of mitochondrial DNA. Proc. Natl. Acad. Sci. USA., 80: 1969-1971.

Cann, R.L., W.M. Brown and A.C. Wilson, 1984. Polymorphic sites and the mechanism of evolution in human mitochondrial DNA. Genetics, 106: 479-499.

Van Tuinen, M., C.G. Sibley and S.B. Hedges, 2000. The early history of modern birds inferred from DNA sequences of nuclear and mitochondrial ribosomal genes. Mol. Biol. Evol., 17: 451-457.

Liu, G., L. Zhou, L. Zhang, Z. Luo and W. Xu, 2013. The complete mitochondrial genome of bean goose (Anser fabalis) and implications for anseriformes taxonomy. PLoS One, Vol. 8.

Blaxter, M.L., 2004. The promise of a DNA taxonomy. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci., 359: 669-679.

Vences, M., M. Thomas, R.M. Bonett and D.R. Vieites, 2005. Deciphering amphibian diversity through DNA barcoding: Chances and challenges. Phil. Trans. R. Soc. B: Biol. Sci., 360: 1859-1868.

Sambrook, J., E.F. Fritsch and T.A. Maniatis, 1989. Molecular Cloning: A Laboratory Manual. 2nd Edn., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA., ISBN-13: 9780879695774, Pages: 397.

Kuchipudi, S.V., M. Tellabati, R.K. Nelli, G.A. White and B.B. Perez et al., 2012. 18S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells. J. Virol, Vol. 9.

Thompson, J.D., D.G. Higgins and T.J. Gibson, 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22: 4673-4680.

Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar, 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol. Biol. Evol., 28: 2731-2739.

Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol., 16: 111-120.

Jukes, T.H. and C.R. Cantor, 1969. Evolution of Protein Molecules. In: Mammalian Protein Metabolism, Munro, H.N. (Ed.), Academic Press, Cambridge, Massachusetts, ISBN: 9781483232119, pp: 21-132.

Johnson, K.P. and M.D. Sorenson, 1999. Phylogeny and biogeography of dabbling ducks (genus: Anas): A comparison of molecular and morphological evidence. Auk, 116: 792-805.

Nei, M. and S. Kumar, 2000. Molecular Evolution and Phylogenetics. Oxford University Press, Oxford, UK., pp: 3-69.

Shabalina, S.A., N.A. Spiridonov and A. Kashina, 2013. Sounds of silence: Synonymous nucleotides as a key to biological regulation and complexity. Nucl. Acids Res., 41: 2073-2094.

Seo, D., M.S.A. Bhuiyan, H. Sultana, J.M. Heo and J.H. Lee, 2016. Genetic diversity analysis of South and East Asian duck populations using highly polymorphic microsatellite markers. Asian-Aust. J. Anim. Sci., 29: 471-478.

Xia, X., M.S. Hafner and P.D. Sudman, 1996. On transition bias in mitochondrial genes of pocket gophers. J. Mol. Evol., 43: 32-40.

Roe, B.A., D.P. Ma, R.K. Wilson and J.F. Wong, 1985. The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J. Biol. Chem., 260: 9759-9774.

Kulikova, I.V., S.V. Drovetski, D.D. Gibson, R.J. Harrigan and S. Rohwer et al., 2005. Phylogeography of the mallard (Anas platyrhynchos): Hybridization, dispersal and lineage sorting contribute to complex geographic structure. Auk, 122: 949-965.

Johnsen, A., E. Rindal, P.G. Ericson, D. Zuccon, K.C. Kerr, M.Y. Stoeckle and J.T. Lifjeld, 2010. DNA barcoding of Scandinavian birds reveals divergent lineages in trans-Atlantic species. J. Ornithol., 151: 565-578.

Kulikova, I.V., G.N. Chelomina and Y.N. Zhuravlev, 2003. Low genetic differentiation of and close evolutionary relationships between Anas platyrhynchos and Anas poecilorhyncha: RAPD-PCR evidence. Russian J. Genet., 39: 1143-1151.

Livezey, B.C., 1991. A phylogenetic analysis and classification of recent dabbling ducks (Tribe Anatini) based on comparative morphology. Auk, 108: 471-507.

Boore, J.L., 1999. Animal mitochondrial genomes. Nucl. Acids Res., 27: 1767-1780.

Yang, S., L. Zhou, W. Lin, X. Li, M. Lu and C. Liu, 2016. Behavioral differentiation between Anas poecilorhyncha and domestic duck. J. Agric. Sci. Technol. A, 6: 270-282.

Romjali, E., A.L. Lambio, E.S. Luis, N.P. Roxas and A.A. Barion, 2006. Fertility and hatchability of eggs on mallard ducks (Anas platyrhynchos L.) of different plumage pattern under different feeding regimes. Prosiding Seminar Nasional Teknologi Peternakan dan Veteriner Cakrawala Baru IPTEK Mendukung Revitalisasi Peternakan, September 12-13, 2005, Bogor, pp: 674-678.

Kusumaningrum, H.P. and M. Zainuri, 2016. Formula pakan itik menggunakan pengkaya cangkang kerang simping (Amosium pleuronectes): Indonesia Patent ID P00201201007. Diponegoro University Indonesia, pp: 1-7.

Downloads

Published

2018-07-15

Issue

Section

Research Article

How to Cite

Kusumaningrum , H. P., Haryanti, W. D. U., & Rahayu, A. R. (2018). Phylogenetic Analysis of Duck Species from Tegal Indonesia Using 18S Ribosomal RNA and Mitochondrial COI Gene. International Journal of Poultry Science, 17(8), 392–404. https://doi.org/10.3923/ijps.2018.392.404