Rugose Morphotype of Salmonella enterica Serovar Typhimurium ATCC14028 Exhibits Chlorine Resistance and Strong Biofilm Forming Ability


Authors

  • Tomi Obe Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762
  • Rama Nannapaneni Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS 39762
  • Chander Shekhar Sharma Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762
  • Aaron Kiess Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762

DOI:

https://doi.org/10.3923/ijps.2018.295.305

Keywords:

Adapted cells, biofilms, chlorine, rugose, Salmonella

Abstract

Background and Objective: Antibiotic resistance is a major global public health problem and studies have shown that when bacteria adapt to one stress, they can offer that protection to resist other stresses. Therefore, the aim of this study was to examine the ability of Salmonella to adapt to chlorine. Methodology: Salmonella Typhimurium (American Type Culture Collection, ATCC 14028) was tested for its ability to adapt to increasing increment of chlorine starting at 125 ppm in tryptic soy broth (TSB). Salmonella Typhimurium demonstrated an acquired tolerance to chlorine in TSB with adapted cells growing in concentrations up to 600 ppm whereas the non-adapted cells did not grow beyond 500 ppm. Results: After 4 days of incubation, S. typhimurium exposed to sublethal chlorine concentrations displayed a distinct rugose and smooth morphology on tryptic soy agar (TSA) plates incubated at 37°C. The rugose, in contrast to smooth morphology (both adapted and control), showed the ability to form very strong biofilms (p<0.05) in polystyrene microtiter plates at room temperature and 37°C. The antibiotic susceptibility patterns of adapted (rugose and smooth) and control cells were tested using different antibiotics according to the Clinical and Laboratory Standards Institutes (CLSI) guideline. There was only slight difference observed in antibiotics resistance of either adapted cell type as compared to control. Conclusion: The incorrect application of chlorine during cleaning and sanitation could select for adapted Salmonella cells, which may attach strongly to plastic surfaces in a processing facility.

References

Hohmann, E.L., 2001. Nontyphoidal salmonellosis. Clin. Infect. Dis., 32: 263-269.

WHO, 2013. Salmonella (non-typhoidal). Updated on August 2013. Fact sheet No. 139. Available at: http://www.who.int/mediacentre/factsheets/fs139/en/ Accessed date 16/02/2015.

CDC., 2013. Chapter 3: Infectious diseases related to travel, Salmonellosis (Nontyphoidal). Center for Disease Control and Prevention, USA. http://wwwnc.cdc.gov/travel/yellowbook/2016/infectious-diseases-related-to-travel/salmonellosis-nontyphoidal/.

USDA-FSIS., 2015. Safe and suitable ingredients in the production of meat, poultry and egg products. FSIS Directive 7120.1 Revision 36. United States Department of Agriculture, Food Safety Inspection Service, Washington, DC. https://www.fsis.usda.gov/wps/wcm/connect/bab10e09-aefa-483b-8be8-809a1f051d4c/7120.1.pdf?MOD=AJPERES.

Jahid, I.K. and S.D. Ha, 2014. The paradox of mixed-species biofilms in the context of food safety. Comprehen. Rev. Food Sci. Food Saf., 13: 990-1011.

Costerton, J.W., Z. Lewandowski, D.E. Caldwell, D.R. Korber and H.M. Lappin-Scott, 1995. Microbial biofilms. Ann. Rev. Microbiol., 49: 711-745.

Shi, X. and X. Zhu, 2009. Biofilm formation and food safety in food industries. Trends Food Sci. Technol., 20: 407-413.

Watnick, P. and R. Kolter, 2000. Biofilm, city of microbes. J. Bacteriol., 182: 2675-2679.

O'Leary, D., E.M. McCabe, M.P. McCusker, M. Martins, S. Fanning and G. Duffy, 2013. Microbiological study of biofilm formation in isolates of Salmonella enterica Typhimurium DT104 and DT104b cultured from the modern pork chain. Int. J. Food Microbiol., 161: 36-43.

Austin, J.W., G. Sanders, W.W. Kay and S.K. Collinson, 1998. Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiol. Lett., 162: 295-301.

Bagge-Ravn, D., Y. Ng, M. Hjelm, J.N. Christiansen, C. Johansen and L. Gram, 2003. The microbial ecology of processing equipment in different fish industries-analysis of the microflora during processing and following cleaning and disinfection. Int. J. Food Microbiol., 87: 239-250.

Gunduz, G.T. and G. Tuncel, 2006. Biofilm formation in an ice cream plant. Antonie Van Leeuwenhoek, 89: 329-336.

Nguyen, H.D.N., Y.S. Yang and H.G. Yuk, 2014. Biofilm formation of Salmonella Typhimurium on stainless steel and acrylic surfaces as affected by temperature and pH level. LWT-Food Sci Technol., 55: 283-288.

Nguyen, H.D.N. and H.G. Yuk, 2013. Changes in resistance of Salmonella Typhimurium biofilms formed under various conditions to industrial sanitizers. Food Control, 29: 236-240.

Somers, E.B., S.L. Schoeni and A.C.L. Wong, 1994. Effect of trisodium phosphate on biofilm and planktonic cells of Campylobacter jejuni, Escherichia coli O157: H7, Listeria monocytogenes and Salmonella typhimurium. Int. J. Food Microbiol., 22: 269-276.

Joseph, B., S.K. Otta and I. Karunasagar, 2001. Biofilm formation by Salmonella spp. on food contact surfaces and their sensitivity to sanitizers. Int. Food Microbiol., 64: 367-372.

Chavant, P., B. Martinie, T. Meylheuc, M.N. Bellon-Fontaine and M. Hebraud, 2002. Listeria monocytogenes LO28: Surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. Applied Environ. Microbiol., 68: 728-737.

Ramesh, N., S.W. Joseph, L.E. Carr, L.W. Douglass and F.W. Wheaton, 2002. Evaluation of chemical disinfectants for the elimination of Salmonella biofilms from poultry transport containers. Poult. Sci., 81: 904-910.

Furukawa, S., Y. Akiyoshi, G.A. O'Toole, H. Ogihara and Y. Morinaga, 2010. Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria. Int. J. Food Microbiol., 138: 176-180.

Liu, C., J. Duan and Y.C. Su, 2006. Effects of electrolyzed oxidizing water on reducing Listeria monocytogenes contamination on seafood processing surfaces. Int. J. Food Microbiol., 106: 248-253.

Yang, Y., M. Miks-Krajnik, Q. Zheng, S.B. Lee, S.C. Lee and H.G. Yuk, 2016. Biofilm formation of Salmonella Enteritidis under food-related environmental stress conditions and its subsequent resistance to chlorine treatment. Food Microbiol., 54: 98-105.

Chen, X., L.J. Bauermeister, G.N. Hill, M. Singh, S.F. Bilgili and S.R. Mckee, 2014. Efficacy of various antimicrobials on reduction of Salmonella and campylobacter and quality attributes of ground chicken obtained from poultry parts treated in a postchill decontamination tank. J. Food Prot., 77: 1882-1888.

USDA-FSIS., 2015. Food safety and inspection service new technology table. United States Department of Agriculture-Food Safety Inspection Service, USA.

Braoudaki, M. and A.C. Hilton, 2004. Adaptive resistance to biocides in Salmonella enteric and Escherichia coli O157 and cross-resistance to antimicrobial agents. J. Clin. Microbiol., 42: 73-78.

Capita, R. and C. Alonso-Calleja, 2013. Antibiotic-resistant bacteria: A challenge for the food industry. Crit. Rev. Food Sci. Nutr., 53: 11-48.

Sheridan, A., M. Lenahan, G. Duffy, S. Fanning and C. Burgess, 2012. The potential for biocide tolerance in Escherichia coli and its impact on the response to food processing stresses. Food Control, 26: 98-106.

Davidson, P.M. and M.A. Harrison, 2002. Resistance and adaptation to food antimicrobials, sanitizers and other process controls. Food Technol., 56: 60-78.

Braoudaki, M. and A.C. Hilton, 2005. Mechanisms of resistance in Salmonella enteric adapted to erythromycin, benzalkonium chloride and triclosan. Int. J. Antimicrob. Agents, 25: 31-37.

Capita, R., F. Riesco-Pelaez, A. Alonso-Hernando and C. Alonso-Calleja, 2014. Exposure of Escherichia coli ATCC 12806 to sublethal concentrations of food-grade biocides influences its ability to form biofilm, resistance to antimicrobials, and ultrastructure. Applied Environ. Microbiol., 80: 1268-1280.

Alonso-Calleja, C., E. Guerrero-Ramos, A. Alonso-Hernando and R. Capita, 2015. Adaptation and cross-adaptation of Escherichia coli ATCC 12806 to several food-grade biocides. Food Control, 56: 86-94.

Anriany, Y.A., R.M. Weiner, J.A. Johnson, C.E. De Rezende and S.W. Joseph, 2001. Salmonella enteric serovar Typhimurium DT104 displays a rugose phenotype. Applied Environ. Microbiol., 67: 4048-4056.

Morris, Jr.J.G., M.B. Sztein, E.W. Rice, J.P. Nataro and G.A. Losonsky et al., 1996. Vibrio cholera 01 can assume a chlorine-resistant rugose survival form that is virulent for humans. J. Infect. Dis., 174: 1364-1368.

Johnson, J.A., P. Panigrahi and J.G. Morris Jr., 1992. Non-O1 Vibrio cholerae NRT36S produces a polysaccharide capsule that determines colony morphology, serum resistance and virulence in mice. Infect. Immun., 60: 864-869.

Wai, S.N., Y. Mizunoe, A. Takade, S.I. Kawabata and S.I. Yoshida, 1998. Vibrio cholerae O1 strain TSI-4 produces the exopolysaccharide materials that determine colony morphology, stress resistance and biofilm formation. Applied Soc. Microbiol., 64: 3648-3655.

Mizunoe, Y., S.N. Wai, A. Takade and S.I. Yoshida, 1999. Isolation and characterization of rugose form of Vibrio cholera O139 strain MO10. Infect. Immun., 67: 958-963.

Yildiz, F. H. and G.K. Schoolnik, 1999. Vibrio cholera O1 El Tor: Identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance and biofilm formation. Proc. Natl. Acad. Sci., 96: 4028-4033.

Patel, J. and M. Sharma, 2010. Differences in attachment of Salmonella enterica serovars to cabbage and lettuce leaves. Int. J. Food Microbiol., 139: 41-47.

CLSI., 2008. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. Approved Standard-Second Edition. M38-A2. National Committee for Clinical Laboratory Standards, Pennsylvania.

CLSI., 2012. Performance standards for antimicrobial disk susceptibility test. Approved Standard-Twelfth Edition. M02-A12. National Committee for Clinical Laboratory Standards, Pennsylvania.

White, P.B., 1938. The rugose variant of vibrios. J. Pathol. Bacteriol., 46: 1-6.

SAS., 2013. SAS User’s Guide: Statistics. Version 9.4. SAS Institute Inc., Cary, NC.

Rice, E.W., C.J. Johnson, R.M. Clark, K.R. Fox and D.J. Reasoner et al., 1992. Chlorine and survival of rugose Vibrio cholera. Lancet, 340: 740-740.

Ryther, R., 2013. Development of a Comprehensive Cleaning and Sanitizing Program for Food Production Facilities. In: Food Safety Management: A Practical Guide for the Food Industry, Motarjemi, Y. (Ed.). Academic Press, New York, pp: 741-768.

Tattawasart, U., J.Y. Maillard, J.R. Furr and A.D. Russell, 1999. Development of resistance to chlorhexidine diacetate and cetylpyridinium chloride in Pseudomonas stutzeri and changes in antibiotic susceptibility. J. Hospital Infect., 42: 219-229.

Chung, H.J., W. Bang and M.A. Drake, 2006. Stress response of Escherichia coli. Compr. Rev. Food Sci. Food Saf., 5: 52-64.

Randall, L.P., S.W. Cooles, N.G. Coldham, E.G. Penuela and A.C. Mott et al., 2007. Commonly used farm disinfectants can select for mutant Salmonella enteric serovar Typhimurium with decreased susceptibility to biocides and antibiotics without compromising virulence. J. Antimicrob. Chemother., 60: 1273-1280.

Rodriguez, A., W.R. Autio and L.A. McLandsborough, 2008. Effect of surface roughness and stainless steel finish on Listeria monocytogenes attachment and biofilm formation. J. Food Prot., 71: 170-175.

Yildiz, F.H. and G.K. Schoolnik, 1998. Role of rpoS in stress survival and virulence of Vibrio cholera. J. Bacteriol., 180: 773-784.

Rice, E.W., C.H. Johnson, R.M. Clark, K.R. Fox and D.J. Reasoner et al., 1993. Vibrio cholera 01 can assume a 'rugose' survival form that resists killing by chlorine, yet retains virulence. Int. J. Environ. Health Res., 3: 89-98.

Dourou, D., C.S. Beauchamp, Y. Yoon, I. Geornaras and K.E. Belk et al., 2011. Attachment and biofilm formation by Escherichia coli O157: H7 at different temperatures, on various food-contact surfaces encountered in beef processing. Int. J. Food Microbiol., 149: 262-268.

Ziech, R.E., A.P. Perin, C. Lampugnani, M.J. Sereno and C. Viana et al., 2016. Biofilm-producing ability and tolerance to industrial sanitizers in Salmonella spp. isolated from Brazilian poultry processing plants. LWT-Food Sci. Technol., 68: 85-90.

Chia, T.W.R., R.M. Goulter, T. McMeekin, G.A. Dykes and N. Fegan, 2009. Attachment of different Salmonella serovars to materials commonly used in a poultry processing plant. Food microbiol., 26: 853-859.

Prigent-Combaret, C., G. Prensier, T.T. Le Thi, O. Vidal, P. Lejeune and C. Dorel, 2000. Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: Role of flagella, curli and colanic acid. Environ. Microbiol., 2: 450-464.

Zogaj, X., M. Nimtz, M. Rohde, W. Bokranz and U. Romling, 2001. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol. Microbiol., 39: 1452-1462.

De Rezende, C.E., Y. Anriany, L.E. Carr, S.W. Joseph and R.M. Weiner, 2005. Capsular polysaccharide surrounds smooth and rugose types of Salmonella enteric serovar Typhimurium DT104. Applied Environ. Microbiol., 71: 7345-7351.

Sirinavin, S. and P. Garner, 1999. Antibiotics for treating Salmonella gut infections. Cochrane Database Syst. Rev.

Gutmann, L., R. Williamson, N. Moreau, M.D. Kitzis and E. Collatz et al., 1985. Cross-resistance to nalidixic acid, trimethoprim and chloramphenicol associated with alterations in outer membrane proteins of Klebsiella, Enterobacter and Serratia. J. Infect. Dis., 151: 501-507.

Lambert, R.J.W., J. Joynson and B. Forbes, 2001. The relationships and susceptibilities of some industrial, laboratory and clinical isolates of Pseudomonas aeruginosa to some antibiotics and biocides. J. Applied Microbiol., 91: 972-984.

Lee, J.C., J.Y. Oh, J.W. Cho, J.C. Park, J.M. Kim, S.Y. Seol and D.T. Cho, 2001. The prevalence of trimethoprim-resistance-conferring dihydrofolate reductase genes in urinary isolates of Escherichia coli in Korea. J. Antimicrob. Chemother., 47: 599-604.

Suller, M.T.E. and A.D. Russell, 2000. Triclosan and antibiotic resistance in Staphylococcus aureus. J. Antimicrob. Chemother., 46: 11-18.

Downloads

Published

2018-05-15

Issue

Section

Research Article

How to Cite

Obe, T., Nannapaneni, R., Sharma, C. S., & Kiess , A. (2018). Rugose Morphotype of Salmonella enterica Serovar Typhimurium ATCC14028 Exhibits Chlorine Resistance and Strong Biofilm Forming Ability. International Journal of Poultry Science, 17(6), 295–305. https://doi.org/10.3923/ijps.2018.295.305