Anatomical and Histological Changes of Reproductive Organs in Japanese Quail (Coturnix japonica) Embryos after in ovo Exposure to Genistein


Authors

  • Sittipon Intarapat Department of Anatomy, Faculty of Science, Mahidol University, Bangkok-10400, Thailand
  • Achariya Sailasuta Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok-10330, Thailand
  • Orawan Satayalai Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok-10330, Thailand

DOI:

https://doi.org/10.3923/ijps.2014.1.13

Keywords:

Coturnix japonica, genistein, in ovo, quail embryos, reproductive organs

Abstract

Genistein, an isoflavonoid phytoestrogen, has a similar structure to endogenous estrogen and is also able to produce estrogen-like effects. Administration of exogenous estrogens as well as phytoestrogens causes reproductive abnormalities in adult birds. Here, we examine whether genistein affects reproductive organ development in Japanese quail at the sexually differentiated stage. Genistein (16 and 24 μg/g egg) was injected into the yolk via the blunt end of the fertilized egg prior to incubation. Both concentrations caused Mullerian duct abnormalities in both sexes and ovotestis formation in male embryos. This is the first report that genistein affects reproductive organ development in avian embryos.

References

Jefferson, W.N., E. Padilla-Banks and R.R. Newbold, 2007. Disruption of the developing female reproductive system by phytoestrogens: Genistein as an example. Mol. Nutr. Food. Res., 51: 832-844.

Jefferson, W.N., E. Padilla-Banks, J.Y. Phelps, K.E. Gerrish and C.J. Williams, 2011. Permanent oviduct posteriorization after neonatal exposure to the phytoestrogen genistein. Environ. Health Perspect, 119: 1575-1582.

Jefferson, W.N., H.B. Patisaul and C.J. Williams, 2012. Reproductive consequences of developmental phytoestrogen exposure. Reproduction, 143: 247-260.

Jiang, Z.Y., S.Q. Jiang, Y.C. Lin, P.B. Xi, D.Q. Yu and T.X. Wu, 2007. Effects of soybean isoflavone on growth performance, meat quality and antioxidation in male broilers. Poult. Sci., 86: 1356-1362.

Kaminska, B., M. Opalka and L. Dusza, 2008. The effects of acth, phytoestrogens and estrogens on corticosterone secretion by gander adrenocortical cells in breeding and nonbreeding seasons. Acta Biologica Hungarica, 59: 173-184.

Kanno, J., H. Kato, T. Iwata and T. Inoue, 2002. Phytoestrogen-low diet for endocrine disruptor studies. J. Agric. Food Chem., 50: 3883-3885.

Lee, B.J., E.Y. Jung, Y.W. Yun, J.K. Kang and I.J. Baek et al., 2004. Effects of exposure to genistein during pubertal development on the reproductive system of male mice. J. Reprod. Dev., 50: 399-409.

Lehraiki, A., C. Chamaillard, A. Krust, R. Habert and C. Levacher, 2011. Genistein impairs early testosterone production in fetal mouse testis via estrogen receptor α. Toxicol. in vitro, 25: 1542-1547.

Lehraiki, A., S. Messiaen, R. Berges, M.C. Canivenc-Lavier, J. Auger, R. Habert and C. Levacher, 2011. Antagonistic effects of gestational dietary exposure to low-dose vinclozolin and genistein on rat fetal germ cell development. Reprod. Toxicol., 31: 424-430.

Leopold, A.S., M. Erwin, J. Oh and B. Browning, 1976. Phytoestrogens: Adverse effects on reproduction in California quail. Science, 191: 98-100.

Lephart, E.D., T.W. West, K.S. Weber, R.W. Rhees, K.D.R. Setchell, H. Adlercreuz and T.D. Lund, 2002. Neurobehavioral effects of dietary soy phytoestrogens. Neurotoxicity Teratol., 24: 5-16.

Lewis, R.W., N. Brooks, G.M. Milburn, A. Soames, S. Stone, M. Hall and J. Ashby, 2003. The effects of the phytoestrogen genistein on the postnatal development of the rat. Toxicol. Sci., 71: 74-83.

Lin, F., J. Wu, M.A. Abdelnabi, M.A. Ottinger and M.M. Giusti, 2004. Effects of dose and glycosylation on the transfer of genistein into the eggs of the japanese quail (Coturnix japonica). J. Agric. Food Chem., 52: 2397-2403.

Millam, J.R., C.B. Craig-Veit, M.E. Batchelder, M.R. Viant, T.M. Herbeck and L.W. Woods, 2002. An avian bioassay for environmental estrogens: The growth response of zebra finch (Taeniopygia guttata) chick oviduct to oral estrogens. Environ. Toxicol. Chem., 21: 2663-2668.

Montani, C., M. Penza, M. Jeremic, G. Biasiotto and G. La Sala et al., 2008. Genistein is an efficient estrogen in the whole-body throughout mouse development. Toxicol. Sci., 103: 57-67.

Montani, C., M. Penza, M. Jeremic, G. Rando and P. Ciana et al., 2009. Estrogen receptor-mediated transcriptional activity of genistein in the mouse testis. Anna. N. Y. Acad. Sci., 1163: 475-477.

Nagao, T., S. Yoshimura, Y. Saito, M. Nakagomi, K. Usumi and H. Ono, 2001. Reproductive effects in male and female rats of neonatal exposure to genistein. Reprod. Toxicol., 15: 399-411.

OECD, 1984. Organization for economy and development. Avian Reproduction Test (Test Guideline No. 206) Organisation for Economic Co-operation and Development, Paris, France.

OECD, 2000. Organization for economy and development. Avian Reproduction Toxicity Test in the Japanese Quail or Northern Bobwhite (Proposal for a New Test Guideline), Organisation for Economic Co-operation and Development, Paris, France.

Opalka, D.M., B. Kaminska, M.K. Piskula, H. Puchajda-Skowronska and L. Dusza, 2006. Effects of phytoestrogens on testosterone secretion by leydig cells from bilgoraj ganders (Anser anser). Br. Poult. Sci., 47: 237-245.

Opalka, M., B. Kaminska, R. Ciereszko and L. Dusza, 2004. Genistein affects testosterone secretion by leydig cells in roosters (Gallus gallus domesticus). Reprod. Biol., 4: 185-193.

Opalka, M., B. Kaminska, A. Leska and L. Dusza, 2012. Mechanism of phytoestrogen action in leydig cells of ganders (Anser anser domesticus): Interaction with estrogen receptors and steroidogenic enzymes. J. Environ. Sci. Health Part A: Toxic Hazard. Subst. Environ. Eng., 47: 1335-1339.

Opalka, M., J. Kugla-Owczarska, B. Kaminska, H. Puchajda-Skowronska, W. Hryniewicka and L. Dusza, 2008. Effects of dietary meals containing different levels of phytoestrogens on reproductive function in bilgoraj ganders. Acta Veterinaria Hungarica, 56: 379-391.

Oshima, A., R. Yamashita, K. Nakamura, M. Wada and K. Shibuya, 2012. In ovo exposure to nonylphenol and bisphenol a resulted in dose-independent feminization of male gonads in japanese quail (Coturnix japonica) embryos. Environ. Toxicol. Chem., 31: 1091-1097.

Ottinger, M.A., M. Abdelnabi, M. Quinn, N. Golden, J. Wu and N. Thompson, 2002. Reproductive consequences of edcs in birds: What do laboratory effects mean in field species? Neurotoxicol. Teratol., 24: 17-28.

Ottinger, M.A., M.A. Abdelnabi, P. Henry, S. McGary, N. Thompson and J.M. Wu, 2001. Neuroendocrine and behavioral implications of endocrine disrupting chemicals in quail. Hormones Behav., 40: 234-247.

Padgett, C.S. and W.D. Ivey, 1960. The normal embryology of the coturnix quail. Anatomical Record, 137: 1-11.

Peralta, I., M.C. Romano and P.N. Velazquez, 2009. Signaling pathways involved in the effect of follicle-stimulating hormone on chick embryo testis cell proliferation. Poult. Sci., 88: 380-386.

Perrin, F.M., S. Stacey, A.M. Burgess and U. Mittwoch, 1995. A quantitative investigation of gonadal feminization by diethylstilboestrol of genetically male embryos of the quail Coturnix coturnix japonica. J. Reprod. Fertil., 103: 223-226.

Rattner, B.A., V.P. Eroschenko, G.A. Fox, D.M. Fry and J. Gorsline, 1984. Avian endocrine responses to environmental pollutants. J. Exp. Zool., 232: 683-689.

Adlercreutz, H., 1995. Phytoestrogens: Epidemiology and a possible role in cancer protection. Environ. Health Perspect., 103: 103-112.

Akdemir, F. and K. Sahin, 2009. Genistein supplementation to the quail: Effects on egg production and egg yolk genistein, daidzein and lipid peroxidation levels. Poult. Sci., 88: 2125-2131.

Akiyama, T., J. Ishida, S. Nakagawa, H. Ogawara and S. Watanabe et al., 1987. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem., 262: 5592-5595.

Awoniyi, C.A., D. Roberts, D.N. Veeramachaneni, B.S. Hurst, K.E. Tucker and W.D. Schlaff, 1998. Reproductive sequelae in female rats after in utero and neonatal exposure to the phytoestrogen genistein. Fertil. Steril., 70: 440-447.

Berg, C., K. Halldin and B. Brunstrom, 2001. Effects of bisphenol A and tetrabromobisphenol A on sex organ development in quail and chicken embryos. Environ. Toxicol. Chem., 20: 2836-2840.

Berg, C., K. Halldin, B. Brunstrom and I. Brandt, 1998. Methods for studying xenoestrogenic effects in birds. Toxicol. Lett., 102-103: 671-676.

Berg, C., K. Halldin, A.K. Fridolfsson, I. Brandt and B. Brunstrom, 1999. The avian egg as a test system for endocrine disrupters: effects of diethylstilbestrol and ethynylestradiol on sex organ development. Sci. Total. Environ., 233: 57-66.

Biau, S., S. Bayle, P. de Santa Barbara and B. Roig, 2007. The chick embryo: an animal model for detection of the effects of hormonal compounds. Anal. Bioanal. Chem., 387: 1397-1403.

Brunstrom, B., J. Axelsson and K. Halldin, 2003. Effects of endocrine modulators on sex differentiation in birds. Ecotoxicology, 12: 287-295.

Brunstrom, B., J. Axelsson, A. Mattsson and K. Haldin, 2009. Effects of estrogens on sex differentiation in Japanese quail and chicken. General Comp. Endocrinol., 163: 97-103.

Brunstrom, B. and J. Orberg, 1982. A method for studying embryo- toxicity of lipophilic substances experimentally introduced into hens eggs. Ambio, 11: 209-211.

Casanova, M., L. You, K.W. Gaido, S. Archibeque-Engle, D.B. Janszen and H.A. Heck, 1999. Developmental effects of dietary phytoestrogens in Sprague-Dawley rats and interactions of genistein and daidzein with rat estrogen receptors alpha and beta in vitro. Toxicol. Sci., 51: 236-244.

Chue, J. and C.A. Smith, 2011. Sex determination and sexual differentiation in the avian model. FEBS J., 278: 1027-1034.

Clark, B.J. and R.K. Cochrum, 2007. The steroidogenic acute regulatory protein as a target of endocrine disruption in male reproduction. Drug. Metab. Rev., 39: 353-370.

Cline, J.M., A.A. Franke, T.C. Register, D.L. Golden and M.R. Adams, 2004. Effects of dietary isoflavone aglycones on the reproductive tract of male and female mice. Toxicol. Pathol., 32: 91-99.

De Man, E. and H.V. Peeke, 1982. Dietary ferulic acid, biochanin A and the inhibition of reproductive behavior in Japanese quail (Coturnix coturnix). Pharmacol. Biochem. Behav., 17: 405-411.

Delclos, K.B., T.J. Bucci, L.G. Lomax, J.R. Latendresse, A. Warbritton, C.C. Weis and R.R. Newbold, 2001. Effects of dietary genistein exposure during development on male and female CD (Sprague-Dawley) rats. Reprod. Toxicol., 15: 647-663.

Ekinci, S. and M. Erkan, 2012. Short term effects of genistein on the testes of quail (Coturnix coturnix). Turk. J. Vet. Anim. Sci., 36: 251-257.

Fritz, W.A., M.S. Cotroneo, J. Wang, I.E. Eltoum and C.A. Lamartiniere, 2003. Dietary diethylstilbestrol but not genistein adversely affects rat testicular development. J. Nutr., 133: 2287-2293.

Fry, D.M., 1995. Reproductive effects in birds exposed to pesticides and industrial chemicals. Environ. Health Persp., 103: 165-171.

Fry, D.M. and C.K. Toone, 1981. DDT-induced feminization of gull embryos. Science, 213: 922-924.

Halldin, K., 2005. Impact of endocrine disrupting chemicals on reproduction in Japanese quail. Domest. Anim. Endocrinol., 29: 420-429.

Halldin, K., C. Berg, A. Bergman, I. Brandt and B. Brunstrom, 2001. Distribution of bisphenol A and tetrabromobisphenol A in quail eggs, embryos and laying birds and studies on reproduction variables in adults following in ovo exposure. Arch. Toxicol., 75: 597-603.

Hanafy, A.M., T. Sasanami, K. Ichikawa, K. Shimada and M. Mori, 2004. Estrogen receptor binding of xenoestrogens and phytoestrogens in Japanese quail (Coturnix japonica). J. Poult. Sci., 41: 30-37.

Hanafy, A.M., T. Sasanami and M. Mori, 2005. Binding of xenoestrogens and phytoestrogens to estrogen receptor beta of japanese quail (Coturnix japonica). J. Poult. Sci., 42: 238-244.

Hearnshaw, H., J.M. Brown, I.A. Cumming, J.R. Goding and M. Nairn, 1972. Endocrinological and histopathological aspects of the infertility in the ewe caused by oetrogenic clover. J. Reprod. Fertil., 28: 160-161.

Hong, M., M.Y. Lin, J.M. Huang, P. Baumeister, S. Hakre, A.L. Roy and A.S. Lee, 2005. Transcriptional regulation of the Grp78 promoter by endoplasmic reticulum stress: Role of TFII-I and its tyrosine phosphorylation. J. Biol. Chem., 280: 16821-16828.

Huang, J., M. Nasr, Y. Kim and H.R. Matthews, 1992. Genistein inhibits protein histidine kinase. J. Biol. Chem., 267: 15511-15515.

Jefferson, W.N., J.F. Couse, E. Padilla-Banks, K.S. Korach and R.R. Newbold, 2002. Neonatal exposure to genistein induces estrogen receptor (ER)alpha expression and multioocyte follicles in the maturing mouse ovary: Evidence for ERbeta-mediated and nonestrogenic actions. Biol. Reprod., 67: 1285-1296.

Jefferson, W.N. and R.R. Newbold, 2000. Potential endocrine-modulating effects of various phytoestrogens in the diet. Nutrition, 16: 658-662.

Rochester, J.R., K.C. Klasing, L. Stevenson, M.S. Denison, W. Berry and J.R. Millam, 2009. Dietary red clover (Trifolium pretense) induces oviduct growth and decreases ovary and testes growth in japanese quail chicks. Reprod. Toxicol., 27: 63-71.

Romanoff, A.L., 1960. The Avian Embryo. MacMillian Press, New York, USA.

Romanoff, A.L. and A.J. Romanoff, 1949. The Avian Egg. John Wiley and Sons Inc., New York.

Sahin, K., F. Akdemir, M. Tuzcu, N. Sahin and M. Onderci et al., 2009. Genistein suppresses spontaneous oviduct tumorigenesis in quail. Nutr. Cancer, 61: 799-806.

Saitoh, S., T. Sato, H. Harada and T. Matsuda, 2004. Biotransformation of soy isoflavone-glycosides in laying hens: Intestinal absorption and preferential accumulation into egg yolk of equol, a more estrogenic metabolite of daidzein. Biochim. Biophys. Acta Gen. Subjects, 1674: 122-130.

Saitoh, S., T. Sato, H. Harada and T. Takita, 2001. Transfer of soy isoflavone into the egg yolk of chickens. Biosci. Biotechnol. Biochem., 65: 2220-2225.

Scheib, D. and M. Reyss-Brion, 1979. Feminization of the quail by early diethylstilbestrol treatment: Histoenzymological investigations on steroid dehydrogenases in the gonads. Arch. Anat. Microsc. Morphol. Exp., 68: 85-98.

Setchell, K.D., 1998. Phytoestrogens: The biochemistry, physiology and implications for human health of soy isoflavones. Am. J. Clin. Nutr., 68: 1333S-1346S.

Setchell, K.D., S.J. Gosselin, M.B. Welsh, J.O. Johnston and W.F. Balistreri et al., 1987. Dietary estrogens-a probable cause of infertility and liver disease in captive cheetahs. Gastroenterology, 93: 225-233.

Shibuya, K., M. Mizutani, K. Sato, M. Itabashi and T. Nunoya, 2005. Comparative evaluation of sex reversal effects of natural and synthetic estrogens in sex reversal test using F1 (AWE x WE) japanese quail embryos. J. Poult. Sci., 42: 119-129.

Shibuya, K., M. Mizutani, M. Wada, K. Sato and T. Nunoya, 2004. A new screening model using F1 (AWE x WE) japanese quail embryo for evaluating sex reversal effects. J. Toxicol. Pathol., 17: 245-252.

Smith, C.A. and A.H. Sinclair, 2001. Sex determination in the chicken embryo. J. Exp. Zool., 290: 691-699.

Smith, C.A. and A.H. Sinclair, 2004. Sex determination: Insights from the chicken. Bioessays, 26: 120-132.

Stoll, R., F. Ichas, N. Faucounau and R. Maraud, 1993. Action of estradiol and tamoxifen on the mullero-regressive activity of the chick embryonic testis assayed in vivo by organotypic grafting. Anat. Embryol., 187: 379-384.

Stoll, R., F. Ichas, N. Faucounau and R. Maraud, 1993. Action of estradiol and tamoxifen on the testis-inducing activity of the chick embryonic testis grafted to the female embryo. Anat. Embryol., 188: 587-592.

Touart, L.W., 2004. Factors considered in using birds for evaluating endocrine-disrupting chemicals. ILAR J., 45: 462-468.

Turner, K.J. and R.M. Sharpe, 1997. Environmental oestrogens-present understanding. Rev. Reprod., 2: 69-73.

Walker, N.E., 1967. Distribution of chemicals injected into fertile eggs and its effect upon apparent toxicity. Toxicol. Appl. Pharmacol., 10: 290-299.

Walker, N.E., 1967. Growth and development of chick embryos nourished by fractions of yolk. J. Nutr., 92: 111-117.

Weniger, J.P., 1991. Embryonic sex hormones in birds. Int. J. Dev. Biol., 35: 1-7.

Willier, B.H., 1952. Development of sex-hormone activity of the avian gonad. Ann. N.Y. Acad. Sci., 55: 159-171.

Willier, B.H., T.F. Gallagher and F.C. Koch, 1935. Sex-modification in the chick embryo resulting from injections of male and female hormones. Proc. Natl. Acad. Sci. USA., 21: 625-631.

Willier, B.H., T.F. Gallagher and F.C. Koch, 1937. The modification of sex development in the chick embryo by male and female sex hormones. Physio. Zool., 10: 101-122.

Willier, B.H., M.E. Rawles and F.C. Koch, 1938. Biological differences in the action of synthetic male hormones on the differentiation of sex in the chick embryo. Proc. Natl. Acad. Sci. USA., 24: 176-182.

Wistedt, A. Y. Ridderstrale, H. Wall and L. Holm, 2012. Effects of phytoestrogen supplementation in the feed on the shell gland of laying hens at the end of the laying period. Anim. Reprod. Sci., 133: 205-213.

Wohlfahrt-Veje, C., K.M. Main and N.E. Skakkebaek, 2009. Testicular dysgenesis syndrome: Foetal origin of adult reproductive problems. Clin. Endocrinol., 71: 459-465.

Woodard, A.E., H. Abplanalp and R.L. Snyder, 1973. Oviposition time in the chukar patridge. Poult. Sci., 52: 536-539.

Zhang, L.D., Q. Deng, Z.M. Wang, M. Gao, L. Wang, T. Chong and H.C. Li, 2013. Disruption of reproductive development in male rat offspring following gestational and lactational exposure to di-(2-ethylhexyl) phthalate and genistein. Biol. Res., 46: 139-146.

Zhao, R., Y. Wang, Y. Zhou, Y. Ni, L. Lu, R. Grossmann and J. Chen, 2004. Dietary daidzein influences laying performance of ducks (Anas platyrhynchos) and early post-hatch growth of their hatchlings by modulating gene expression. Comp. Biochem. Physiol. A. Mol. Integr Physiol., 138: 459-466.

Zhao, R.Q., Y.C. Zhou, Y.D. Ni, L.Z. Lu, Z.R. Tao, W.H. Chen and J. Chen, 2005. Effect of daidzein on egg-laying performance in shaoxing duck breeders during different stages of the egg production cycle. Br. Poult. Sci., 46: 175-181.

Downloads

Published

2013-12-15

Issue

Section

Research Article

How to Cite

Intarapat , S., Sailasuta, A., & Satayalai, O. (2013). Anatomical and Histological Changes of Reproductive Organs in Japanese Quail (Coturnix japonica) Embryos after in ovo Exposure to Genistein. International Journal of Poultry Science, 13(1), 1–13. https://doi.org/10.3923/ijps.2014.1.13