Microsatellite DNA Loci for Population Studies in Brazilian Chicken Ecotypes


Authors

  • C.S. Clementino Department of Animal Sciences, Federal University of Piaui, Campus Agrícola da Socopo, 64049-550, Teresina, PI, Brazil
  • F.J.V. Barbosa RENORBIO Programme from the Brazilian National Research Council, Brazil
  • A.M.F. Carvalho Department of Animal Sciences, State University of Piaui, Piraja, CEP 64002-150, Teresina-PI, Brazil
  • R.A.R. Costa-Filho Department of Animal Sciences, Federal University of Piaui, Campus Agrícola da Socopo, 64049-550, Teresina, PI, Brazil
  • G.R. Silva Department of Animal Sciences, Federal University of Piaui, Campus Agrícola da Socopo, 64049-550, Teresina, PI, Brazil
  • E.G. Campelo Department of Animal Sciences, Federal University of Piaui, Campus Agrícola da Socopo, 64049-550, Teresina, PI, Brazil
  • F.B. Britto Department of Natural Sciences, Federal University of Piaui, Campus Cinobelina Elvas, BR 125 Km 3, Planalto Cibrazem, Bom Jesus, PI 64900-000, Brazil
  • F.M. Diniz EMBRAPA Meio-Norte, Av. Duque de Caxias, 5650, Cx. Postal: 01, Teresina, PI, CEP: 64.006-220, Brazil

DOI:

https://doi.org/10.3923/ijps.2010.1100.1106

Keywords:

Genetic variability, local chicken, molecular markers, SSR

Abstract

In poultry, the reduction in genetic variability of native chicken populations has led to the use of microsatellites in many genetic studies of chicken ecotypes. To be of maximum usefulness as a genetic marker, microsatellite primers should be amplifying the same locus other than the source of the primer sequence in different populations. Even in closely related lines or breeds microsatellite genotyping errors may be introduced from primer mismatches as a result of mutations in the primer binding sites. Therefore, the selection, use and optimization of microsatellites are considered to be a fundamental step towards full success in genetic studies. Herein, 20 microsatellite loci are presented with great potential for diversity studies in Brazilian chicken ecotypes. The analyses of these ecotypes revealed a total of 191 robust alleles, ranging from three to 18, with an average of 9.6 alleles per locus. The average observed heterozygosity was 0.785, while the mean expected heterozygosity was 0.688. Additionally, the mean polymorphic information content value (0.731) further reflected high level of polymorphism across all microsatellite loci. The topology of the dendrogram constructed with the neighbour-joining method showed probable patterns of relationship and genetic differentiation among the individual ecotypes. Overall, microsatellite loci have proven to be highly useful for studying the variability of chicken ecotypes in the Mid-North region of Brazil.

References

Benbouza, H., J.M. Jacquemin, J.P. Baudoin and G. Mergeai, 2006. Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gel. Biotech. Agron. Soc. Environ., 10: 77-81.

Botstein, D., R.L. White, M. Skolnick and R.W. Davis, 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet., 32: 314-331.

Cheng, H.H. and L.B. Crittenden, 1994. Microsatellite markers for genetic mapping in the chicken. Poult. Sci., 73: 539-546.

Crooijmans, R.P., P.A. van Oers, J.A. Strijk, J.J. van der Poel and M.A. Groenen, 1996. Preliminary linkage map of the chicken (Gallus domesticus) genome based on microsatellite markers: 77 new markers mapped. Poult. Sci., 75: 746-754.

De La Rua, P., J. Galian, J. Serrano and R.F.A. Moritz, 2001. Genetic structure and distinctness of Apis mellifera L. populations from the canary islands. Mol. Ecol., 10: 1733-1742.

Ding, F.X., G.X. Zhang, J.Y. Wang, Y. Li and L.J. Zhang et al., 2010. Genetic diversity of a Chinese native chicken breed, Bian chicken, based on twenty-nine microsatellite markers. Asian-Aust. J. Anim. Sci., 23: 154-161.

Diniz, F.M., A. Iyengar, P.S.C. Lima, N. Maclean and P. Bentzen, 2007. Application of a double-enrichment procedure for microsatellite isolation and use of tailed primers for high throughput genotyping. Gen. Mol. Biol., 30: 380-384.

Don, R.H., P.T. Cox, B.J. Wain Wright, K. Baker and J.S. Mattick, 1991. Touchdown PCR to circumvent spurious priming during gene amplification. Nucleic Acid Res., 19: 4008-4008.

FAO, 2000. World Watch List for Domestic Animal Diversity. 3rd Edn., Food and Agriculture Organization, Rome, Italy, ISBN: 92-5-104511-9, Pages: 746.

Gibbs, M., D.A. Dawson, C. Mccamely, A.F. Wardle, J.A.L. Armour and T. Burk, 1997. Chicken microsatellites marker isolated from libraries enriched for simple sequence repeat. Anim. Genet., 28: 401-417.

Goudet, J., 2001. FSTAT: A Program to Estimate and Test Gene Diversities and Fixation Indices (Version 2.9.3). Institute of Ecology, University of Lausanne, Lausanne.

Hammer, O., D.A.T. Harper and P.D. Ryan, 2001. PAST: Paleontological statistics software package for education and data analysis. Paleontol. Electron., 4: 1-9.

Hassen, H., F.W.C. Neser, A. de Kock and E. van Marle-Koster, 2009. Study on the genetic diversity of native chickens in Northwest Ethiopia using microsatellite markers. Afr. J. Biotechnol., 80: 1347-1353.

Kaiser, M.G., N. Yonash, A. Cahaner and S.J. Lamont, 2000. Microsatellite polymorphism between and within broiler populations. Poult. Sci., 79: 626-628.

Kalinowski, S.T., M.L. Taper and T.C. Marshall, 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol., 16: 1099-1106.

Kuleung, C., P.S. Baenziger and I. Dweikat, 2004. Transferability of SSR markers among wheat, rye and triticale. Theor. Applied Genet., 108: 1147-1150.

Lessios, H.A., 1992. Testing electrophoretic data for agreement with hardy-weinberg expectations. Mar. Biol., 112: 517-523.

Liu, G.Q., X.P. Jiang, J.Y. Wang, Z.Y. Wang, G.Y. Liu and Y.J. Mao, 2008. Analysis of genetic diversity of yangzhou chicken by microsatellite markers. Int. J. Poult. Sci., 7: 1237-1241.

Mariante, A.S. and N. Cavalcante, 2006. Animals of the Discovery: Domestic Breeds in the History of Brazil. 2nd Edn., Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil, pp: 274.

McConnell, S.K.J., D.A. Dawson, A. Wardle and T. Burke, 1999. The isolation and mapping of 19 tetranucleotide microsatellite markers in the chicken. Anim. Genet., 30: 183-189.

Mohammadabadi, M.R., M. Nikbakhti, H.R. Mirzaee, A. Shandi, D.A. Saghi, M.N. Romanov and I.G. Moiseyeva, 2010. Genetic variability in three native Iranian chicken populations of the Khorasan province based on microsatellite markers. Russ. J. Genet., 46: 505-509.

Nasiri, M.T.B., F. Shokri, S.E. Khanian and S. Tavakoli, 2007. Study on polymorphism of isfahan native chickens population using microsatellite markers. Int. J. Poult. Sci., 6: 835-837.

Osei-Amponsah, R., B.B. Kayang, A. Naazie, Y.D. Osei and I.A.K. Youssao et al., 2010. Genetic diversity of forest and savannah chicken populations of Ghana as estimated by microsatellite markers. Anim. Sci. J., 81: 297-303.

Pompanon, F., A. Bonin, E. Bellemain and P. Taberlet, 2005. Genotyping errors: Causes, consequences and solutions. Nat. Rev. Genet., 6: 847-859.

Rajkumar, U., B.R. Gupta and A.R. Reddy, 2008. Genomic heterogeneity of chicken populations in India. Asian-Aust. J. Anim. Sci., 21: 1710-1720.

Raymond, M. and F. Rousset, 1995. GENEPOP (version 1.2), population genetics software for exact tests and ecumenicism. J. Hered., 86: 248-249.

Sambrook, J. and D.W. Russell, 2001. Molecular Cloning: A Laboratory Manual. 3rd Edn., Cold Spring Harbor Laboratory Press, New York, ISBN-13: 978-0879695774, pp: 999.

Soulsbury, C.D., G. Iossa and K.J. Edwards, 2009. The influence of evolutionary distance between cross-species microsatellites and primer base-pair composition on allelic dropout rates. Conserv. Genet., 10: 797-802.

Tadano, R., M. Nishibori, Y. Imamura, M. Matsuzaki and K. Kinoshita et al., 2008. High genetic divergence in miniature breeds of Japanese native chickens compared to red junglefowl, as revealed by microsatellite analysis. Anim. Genet., 39: 71-78.

Ya-Bo, Y., W. Jin-Yu, D.M. Mekki, T. Qing-Ping and L. Hui-Fang et al., 2006. Evaluation of genetic diversity and genetic distance between twelve Chinese indigenous chicken breeds based on microsatellite markers. Int. J. Poult. Sci., 5: 550-556.

Zane, L., L. Bargelloni and T. Patarnello, 2002. Strategies for microsatellite isolation: A review. Mol. Ecol., 11: 1-16.

Crooijmans, P.R.M.A., R.J.M. Dijkhof, J.J. van der Poel and M.A.M. Groenen, 1997. New microsatellite markers in chicken optimized for automated fluorescent genotyping. Anim. Genet., 28: 427-437.

Downloads

Published

2010-11-15

Issue

Section

Research Article

How to Cite

Clementino, C., Barbosa, F., Carvalho, A., Costa-Filho, R., Silva, G., Campelo, E., Britto, F., & Diniz , F. (2010). Microsatellite DNA Loci for Population Studies in Brazilian Chicken Ecotypes. International Journal of Poultry Science, 9(12), 1100–1106. https://doi.org/10.3923/ijps.2010.1100.1106