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Abstract: Modeling covariance structure was used to estimate and to predict feed conversion in broiler
chickens from one experiment under repeated-measures design. Eight treatments that consisted in a
combination of four strains (Arbor Acres, Ag Ross 308, Cobb and RX) and two sexes were evaluated at six
ages (7, 14, 21, 28, 35 and 42 d) in two blocks with three replicates per block. Feed conversion was
subjected to a mixed model, MIXED procedure in SAS® software, where was modeled covariance structure
using ten types. Also, it was obtained a correlogram and analyses of variance for each structure.
Meanststandard errors were estimated and polynomial trends were assessed using linear, second- and
third-order to predict the trait over ages. First-Order Autoregressive Moving-Average was chosen the best
covariance structure that is extremely important to obtain more accuracy of estimate (from 1.048 at 7 days
to 1.703 at 42 days for Cobb) and predicted (from 1.061 at 7 days to 1.577 at 42 days for Cobb) means on
feed conversion, which is better predicted when linear effect is used because it presented very closely both
estimate and predicted means at all ages, except at 14 days. Modeling covariance structure allowed us to
choose the best model to estimate and to predict feed conversion, opening the windows to understand a little
more about its trend over ages and also to purpose nutrition managements that may be adopted to maximize
growth and to minimize total cost of poultry production.
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Introduction

Feed intake and its efficient utilization is one of the major
concerns in poultry as feed cost is one of the highest
components of total cost of production. Feed alone may
contribute from 80 to 70% to the total cost of production
in broiler chickens (FAO, 2006). Better utilization of feed
and avoiding unnecessary feed wastage could be the
leading factors in minimizing total cost of poultry
production.

Accurate prediction of growth patterns, such as feed
conversion and related co (variances) across age is
crucial for broiler producers. Taking into account
bioeconomic models, broiler growers can make better
management decisions in monitoring and controlling
growth, especially in estimating daily nutrient
requirements at different ages (Hancock ef al, 1995;
Gous, 1998).

Feed conversion is an index that associates both feed
intake and gain weight these are routinely evaluated
weekly on the same experimental units in broiler chicken
performance experiments, which are carried out up to 42
d of age. Indeed this type of experiment is under
repeated-measures design.

Reasons to carry out experiments under repeated-
measures design are:

(1) The suspect that treatment effects over time are
changed,
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(2) They provide adjusted conditions for control of
accessory factors that may influence the response,

(3) They improve, in general, the accuracy of estimated
contrasts, which are associated to differences
between means from response at different times
(Gill, 1986; Reiczigel, 1999).

Responses from points close in time are usually more
highly correlated with each other points than responses
from points far-apart in time under repeated-measures
design (Littell ef a/., 1996). An immediate consequence
to ignore the presence this correlation is the apparent
significant difference between means of treatments are
exaggerated and the sensitivity of tests for interaction is
seriously reduced. When the correlation of errors is
ighored, the inferences may be or may not be distorted,
depending on degree of homogeneity of covariance from
data at different times (Gill, 1986; Crowder and Hand,
1990).

The correlation among measurements within-subjects
factor across time can be fitted with a special covariance
structure, which usually assumes independent errors.
Fitting an appropriated covariance structure is essential
for inferences on means may be correct and valid. More
details about covariance structures may be found in SAS
(1999).

Repeated-measures design has been usually
employed in experiments in the medical area (Paterson,
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2001), in the animal science (Allen ef al, 1983;
Simianer, 1988), in the human area (Gomez, 2006;
Hildebrandt ef af, 2006) and in the statistical
methodologies (Liang and Zeger, 1986; Berkovits et al,
2000). Specifically in the poultry science, the papers,
which employ this methodology, are poor (Heier et af.,
1999; Choy ef al,, 2002; Rosario ef al., 2005).

The aim of the current study was to determine the best
model to estimate and to predict feed conversion in
broiler chickens by modeling covariance structure.

Materials and Methods

Animals and experimental conditions: It was carried out
one experiment, where 1920 young chickens (960
males and 960 females) from four broiler strains (Arbor
Acres, Ag Ross 308, Cobb, and RX) were used to
measure feed intake and gain weight weekly, across six
weeks. The three first strains are commercial and the
last one is an experimental strain.

The care of the birds met the guidelines of the Canadian
Council on Animal Care {1993). Birds were housed in
floor pen (2.20x1.80 m?) with 6 pens per treatment and
40 young chickens per pen. Four types of feed were
available, containing the metabolizable energy levels
(MJ/kg) and the crude protein {(g/kg), respectively: 0-7 d:
12.34 and 225; 8-14 d: 12.76 and 215; 15-35 d: 13.18
and 192; 36-42 d: 13.18 and 190. Feed and water were
available ad fibitum during the entire experimental
period.

Feed conversion was calculated for each pen as
following: [feed intake (kg)/gain weight (kg)]. All
assumptions of the F-test were verified and confirmed in
descriptive statistic analyses in SAS® software.

Statistical analyses: Treatments consisted in a
combination of four strains and two sexes in a whole of
eight treatments, which were measured at six ages (7,
14, 21, 28, 35, and 42 d). The experimental design was
defined as balanced complete blocks {(two blocks and
three replicates per block) with eight treatments
assigned randomly and six ages of measurements.
Each experimental unit or subject (pen) had 40 birds.
The statistical model used was:

Yuklm = ” + BI + CXJ + )\j + (G)\)Jj + dekf + Tm + (GT)Jm + (/\T)jm +
(GAT)Um + eu.‘drn

where,

i=1,...,4,j=1,2k=1,23,1=1,2,m=1,..., 6
Y jum I8 the observation in /" strain and /" sex in /" block
and K" replicate in m" age;

H is the model constant;
Bis the effect of the block £";
a, is the effect of the strain /™

A is the effect of the sex /"

(k) is the interaction between strain and sex;

d,« is the random effect associated with /" block and k"
replicate, in " strain and /" sex, assuming d,, ~ N (0,
Ga?), where Go?, is the covariance matrix between-
subject (pen) assuming independent errors;

T,, is the effect of the age m™;

(am),.is the interaction between strain and age;

(A1);, is the interaction between sex and age;

(axAT);is the interaction between strain and sex and age;

€,um1S the random error associated with /" block and k"
replicate, in /" strain, /" sex and m" age, with &;,,,~ N (0,
Ro’.), where Ro’, is covariance matrix within-subject
(pen) that was modeled, assuming dependent errors.
Ten covariance structures were used to model e,
Variance Components, Compound Symmetric, First-
Order Autoregressive, First-Order Autoregressive with
random effect for pen, Toeplitz, Unstructured,
Heterogeneous First-Order Autoregressive,
Heterogeneous First-Order Autoregressive with random
effect for pen, Heterogeneous Compound Symmetric
and First-Order  Autoregressive  Moving-Average,
according to SAS (1999), where may be found more
details about each structure.

Feed conversion was subjected to a mixed model,
MIXED procedure in SAS® software (Littell et a/., 1996),
using the approaches presented by Littell ef af. (1998;
2000). For all analyses, we assumed p<0.05.

Akaike’s Information Criterion (AIC) (Akaike, 1974) and
Schwarz’'s Bayesian Criterion (SBC) or Bayesian
Information Criterion (BIC) (Schwarz, 1978) were used to
indicate relative goodness-of-test and may be used to
compare models with the same fixed effects but different
covariance structures. Formulae for their computation
are: AIC = -2log L(a)+2k,where L(a) is the maximized
likelihood function and k is the number of free
parameters in the model and BIC = -2In L(a) + KIn(m,
where n in the number of observations, equivalently, the
sample size; k is the number of free parameters to be
estimated and L(a) is the maximized value of the
likelihood function for the estimated model. The
smallest value for both criteria indicates the best fit.
One correlogram (Cressie, 1991), assuming Toeplitz as
the reference type and analyses of variance were
obtained for each tested covariance structure. We
preferred Toeplitz because it is the most general
structure and it exploits existence of trends in (co)
variances over time, characteristics that Unstructured
does not present.

To choose the best covariance structure, we took into
account jointly AIC and BIC Criteria, the correlogram and
a covariance model, which provides a good fit to the
Toeplitz estimates and had a small number of
parameters as assumed by Littell ef al. (2000).



Rosario et al.: Estimating and Predicting Feed Conversion

Table 1: Comparison of ten covarniance structures using Akaike's Information Criterion (AIC) and Bayesian Information Criterion (BIC)

Estimated

Structure name (i, )" element parameters AlIC! BIC'
Variance Components aA@=pandi 1 -875.0 -873.2

corresponds to k" effect
Compound Symmetric alxa? (i =)) 2 -912.2 -908.5
First-Order Autoregressive a? pV=l 2 -925.8 -922.1
First-Order Autoregressive with random effect for pen a? p¥= with random effect for pen 3 -925.7 -920.1
Toeplitz Ty 6 -920.3 -909.1
Unstructured ay 21 -1084.4 -1045.1
Heterogeneous First-Order Autoregressive agpld 7 -1088.1 -1075.0
Heterogeneous First-Order Autoregressive aopi with random
with random effect for pen effect for pen 8 -1095.7 -1080.7
Heterogeneous Compound Symmetric aap1( = H+1{=)) 7 -1065.9 -1052.8
First-Order Autoregressive Maoving-Average Flyp 1N+ = ) 3 -926.1 -920.5
'the smallest is better
Table 2: Values of probability for F-tests for fixed effects for ten covariance structures
Structure name Strain (St) Sex (Se) StxSe Age (A) StxA SexA StxSexA
Variance Components <0.0001 <0.0001 0.1640 <0.0001 0.0041 0.7973 0.9252
Compound Symmetric <0.0001 <0.0001 0.5647 <0.0001 <0.0001 0.6282 0.7070
First-Order Autoregressive 0.0001 <0.0001 0.6416 <0.0001 0.0016 0.8830 0.7194
First-Order Autoregressive with random 0.0001 <0.0001 0.6532 <0.0001 0.0005 0.8364 0.6967
effect for pen
Toeplitz 0.0002 <0.0001 0.6664 <0.0001 0.0003 0.8314 0.6725
Unstructured <0.0001 <0.0001 0.5647 <0.0001 <0.0001 0.6702 0.5252
Heterogeneous First-Order Autoregressive <0.0001 <0.0001 0.5821 <0.0001 <0.0001 0.7348 0.5321
Heterogeneous First-Order Autoregressive
with random effect for pen <0.0001 <0.0001 05254 <0.0001 <0.0001 0.6419 0.3931
Heterogeneous Compound Symmetric <0.0001 <0.0001 0.6245 <0.0001 <0.0001 0.4465 0.3536
First-Order Autoregressive Moving-Average 0.0002 <0.0001 0.6697 <0.0001 0.0003 0.8385 0.6630

We estimated meansistandard errors and we modeled
polynomial trends over time based on linear, second-
and third-order on interactions between strainxage and
sexxage using the MIXED procedure in SAS® software
using the best chosen covariance structure. Both
estimated + standard errors and predicted + standard
errors means were plotted in a graph for comparisons.

Results and Discussion

Choosing the covariance structure: AlC and BIC values
for ten covariance structures are presented in Table 1. It
was  found that Heterogeneous First-Order
Autoregressive with random effect for pen and Variance
Components had the smallest and the largest values
both AIC and BIC, indicating the best and the worst
covariance structure, respectively. From all tested
covariance structures, there were only two that
disagreed in relation to the rank (from the smallest to the
largest value) between AIC and BIC values, they were:
Unstructured and Heterogeneous Compound
Symmetric.

Usually the agreement between these criteria will not
always be evidenced on the choice of best model,
because they penalize the models differently, where BIC
is more severe for the number of estimated parameters
than AIC. Since our objective is parsimonious modeling
of the covariance structure, we relied more on the BIC
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than the AIC. This fact may explain the discrepancy
between values from these criteria on all tested
covariance structures verified in Table 1. Our results
were according to Littell ef af (2000), who found
disagreement between AIC and SBC values in a
pharmaceutical study. In contrast, Heier ef al. (1999),
studying mortality and Marek's disease in Norwegian
and imported White Leghorns, found agreement
between AIC and SBC.

Fig. 1 contains the correlogram, which is a graphical
device for assessing correlation structure, showing
basically the correlation function. It could be seen that
the best adjustment with Toeplitz structure occurred with
First-Order Autoregressive Moving-Average. Although
Heterogeneous First-Order Autoregressive with random
effect for pen had the smallest AIC and BIC criteria it did
not show suitable adjustment with Toeplitz, presenting
the second worst adjustment, only infericor than Variance
Components. The addition of random effect for pen both
Heterogeneous First-Order Autoregressive and First-
Order Autoregressive lead these covariance structures
plus Variance Components to present the worst
agreement with Toeplitz.

Correlogram has been plotted by Littell ef al. (1998;
2000), who empathized its importance to help them to
choose the best covariance structure to model data set
from repeated-measures design. We are according to
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Fig. 1. Correlogram for each covariance structure, VC:
Variance  Components, CS:  Compound
Symmetric, AR(1): First-Order Autoregressive,
AR(1)+RE: First-Order Autoregressive with
random effect for pen, TOEP:. Toeplitz, UN:
Unstructured, ARH (1). Heterogeneous First-
Order Autoregressive, ARH (1+RE:
Heterogeneous First-Order Autoregressive with
random effect for pen, CSH: Heterogeneous
Compound Symmetric, ARMA (1,1): First-Order
Autoregressive Moving-Average

those authors, because in our study the correlogram
also helped us to take this decision.

The addition of random effect for pen did not result in
better models in our study. It was a surprise for us
because usually this addition leaves to hetter results
when between-subject variation is modeled together
with within-subject variation, as verified by Littell et af
(1998;2000). We believed that the within-subject
variation was more important than the between-subject
variation to define the best covariance since the data set
presented homogeneity of variance, which might have
minimized the between-subject (pen) in our study.
Table 2 contains values of probability of F tests for fixed
effects (strain, sex, age and their interactions) for each
tested covariance structure. The probabilities values did
not differ for all covariance structures for only sex and
age effects (p<0.0001). For strain effect significances
were similar {(p< 0.0002). For sex x age effect was found
discrepancy between covariance structures, where
Compound Symmetric, Unstructured, Heterogeneous
First-Order Autoregressive, Heterogeneous First-Order
Autoregressive  and  Heterogeneous  First-Order
Autoregressive with random effect for pen presented the
smallest probability (p<0.0001) and the others
presented probabilities from p = 0.0003 (Toeplitz and
First-Order Autoregressive Moving-Average) to p
0.0041 (Variance Components). For interactions
between strainxage, sex x age and strainxsexxage no
significances were evidenced for all covariance
structures.

When we analyze data sets no modeling covariance
structure, it is assumed the Variance Components
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structure and from our results it was verified that it would
not be suitable to this objective, leading us to erronecus
conclusions. We demonstrated that depending on the
covariance structure assumed to analyze the data set,
the significances may be or may not be distorted, leaving
to wrong or no accurate conclusions (Table 2).

As related by Vonesh and Chinchilli (1997) when the
analysis of variance from data set under repeated-
measures design is obtained, three hypothesis tests on
fixed effects are made: 1st. there is no difference
between treatments (coincidence of profile hypothesis),
2nd: there is no difference between ages (constancy
hypothesis) and 3rd: there is no interaction between
fixed effects (parallelism of profile hypothesis). In current
study we found parallelism of profile hypothesis only for
interactions between strainsxsex, sexxage and
strainxsexxage, which means to say that these effects
have constancy trends over ages. All the cthers fixed
effects were significant from Table 2.

Based on the information from Table 1 and 2, Fig. 1 and
our assumptions, we concluded that First-Order
Autoregressive Moving-Average (only 3 estimated
parameters. rho 0.7511, gamma 0.5699 and
residual = 0.001187) was the best choice of covariance
structure to model feed conversion. This structure was
also chosen by Lorenzo Bermejo et al. (2003), who
compared linear and nonlinear functions and covariance
structures to estimate feed intake pattern in growing
pigs and by Pala and Savas (20086), who studied
relationships between daily, morning, evening and peak
yield and persistency in Turkish Saanen goats.
Modeling covariance structure from repeated-measures
data has been reported in several studies. Heier et af.
(1999) found that Unstructured was the best approach to
model the cumulative mortality by Marek's disease in
chickens. Mansour et al (1985;1991) assessed
conformation traits using First-Order Autoregressive
structure in Holstein cows. Littell ef al. (1998) defined the
best covariance structure to investigate effects of several
supplemental sources of dietary magnesium on urinary
magnesium excretion in lambs as First-Order
Autoregressive plus random pen effect.

Estimating and predicting means over time: In Fig. 2
are presented estimated meanststandard errors for
interaction between strainxage and sexxage (no
significant) modeled with First-Order Autoregressive
Moving-Average structure. Comparing them it was
verified that there was differentiated trend between
strains within each age and between ages within each
strain, where at least one strain differed from the others
at 7, 14 and 42 days, being Cobb showed the best
mean. From 21 to 35 days Cobb was also the best, but
it was equal to Arbor Acres and Ag Ross 308. Between
ages a same strain differed between all them. Sexes
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Fig. 2. Interactions between strainxage and sexxage modeled with First-Order Autoregressive Moving-Average
covariance structure: estimated meanststandard errors in columns and predicted meanststandard errors
on linear effect in points, A: Arbor Acres, B: Ag Ross 308, C: Cobb, D: RX; M: male, F: female

differed among them within and between ages, where
males were better than females. Our resulis are
according to Rosario et a/ (2005) and indicated us that
selection pressure on our experimental strain (RX),
which is still in development and presented the largest
mean at 42 days, should be more intensive if the aim
will be to improve its feed conversion compared with
each other commercial strains.

Also, in Fig. 2 are presented predicted meanststandard
errors for interaction between strainxage and sexxage
(no significant) accommodating the covariance through
First-Order Autoregressive Moving-Average structure in
polynomial trends. Previous analyses showed that only
linear effect was significant for interaction between strain
x age (p = 0.0003). Second- and third-order effect did not
present any significance. Then, we concluded that linear
effect would be the best model to explain the data set.
We could observe that the adjustment between
estimated and predicted means, within each interaction,
was extremely strong at all ages, except at 14 days. This
fact convinced us that the choice of the covariance
structure to model the data set was accurate, because
the intervals of the estimated and predicted means were
overlapped.

Van Buggenhout et af. (2004) investigated the validity of
the assumption of linearity in an adaptive modeling
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approach in terms of prediction accuracy, which was
compared with the dynamic growth response of broilers
using a time-variant parameter estimation procedure
and they concluded that last one was slightly better
modeled assuming non-linear dynamics in a short time
window. Our results were disaccording to those authors
because showed that feed conversion was modeled
better employing a linear model, since at all ages,
except at 14 days, the estimated and predicted means
showed the strongest adjustment among them.
However, Lorenzo Bermejo ef al. (2003) found that for
selection on early feed intake linear-segmented, logistic
and Richards's functions resulted in the most usable
estimates up to 120 days in pigs that lead us to believe
that the employment of linear effect must be correct.
Below are presented the coefficients (tstandard errors)
of fitted linear equations within each interaction:

(The FC is feed conversion and A is age)

Arbar Acres: FC = 0.9664 (+0.01453)+0.01843 (x0.000512) A
Ag Ross 308: FC = 1.0101 (£0.01453)+0.01681 (x0.000512) A
Cobb: FC = 0.9317 (£0.01453)+0.01843 (x0.000512) A
RX: FC = 0.9783 (£0.01453)+0.01871 (x0.000512) A
Male: FC = 0.9843 (£0.01034)+0.01829 (+0.000365) A
Female: FC = 0.9600 (+0.01034)+0.01786 (+0.000365) A
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Regarding strains, we could observe that the smallest
angular coefficient was found for Ag Ross 308, but from
7 to 21 days Cobb presented the smallest (p<0.05)
predicted mean and from 28 to 42 days this strains plus
Arbor Acres and Ag Ross 308 were better than RX
Sexes no differed among them.

Several works have been carried out to predict growth
parameters (Parks, 1982, Emmans, 1995, Wang and
Zuidhof, 2004; Cangar et al., 2008; Orheruata et al,
2008). Growth models have alsoc been used to
determine optimum feeding regimen. Models have been
developed to show the relationship between feed intake
and gain weight. Aerts et al. (2003a;b) calculated daily
feed supply on the basis of a model-based control
algorithm, which was able to grow the birds according to
different target trajectories, as closely as possible,
ranging from restricted to compensatory growth.
Because each strain responsed differently over ages on
feed conversion, our results may be applied in the
practice for poultry to estimate daily nutrient
requirements, basically energy and protein, at different
ages in bioeconomic models as proposed by Gous ef
al. (1999;2002), maximizing gain weight and minimizing
feed intake. Indeed this relationship has been always
looked for broiler producers.

Finally, modeling covariance structure allowed us to
choose the best model to estimate and to predict feed
conversion, opening the windows to understand a little
more about its trend over ages and also to purpose
nutrition managements that may be adopted to
maximize growth and to minimize total cost of poultry
production.
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