ISSN 1682-8356 DOI: 10.3923/ijps.2024.100.108

Research Article

Effect of Chlorine Dioxide on the Performance, Meat Quality, Gut Health, Microbial Load, Noxious Gas Emission and Immune Responses of Broiler Chicken

¹M.R. Hassan, ²M. Rahman, ²A.S. Naushinara, ¹M.A.G. Rabbani, ³S. Alam, ¹S. Faruque, ¹S. Sultana, ²M.E. Huda, ⁴M.S. Alam, ⁴M.S. Ahsan, ⁴M.H.E. Emu and ⁵N. Sultana

Abstract

Objective: The experiment was conducted to study the effects of chlorine dioxide (ClO₂) on the growth performance, meat quality, gut health, microbial load, noxious gas emissions and immune responses of broiler chickens. **Methodology:** The birds were divided into 6 treatments with 5 replications in each treatment. Birds under the T_1 and T_2 treatments received only clean drinking water, whereas in the T_3 and T_4 treatments, 2 ml of ClO₂ was added in 3-liter water for 12 and 24 hrs, respectively. On the other hand, in T_5 and T_6 treatments, 1 ml ClO₂ was added in 6-litre water for 12 and 24 hrs, respectively. **Results:** The inclusion of chlorine dioxide in drinking water did not significantly affect the growth performance and meat quality of the broiler chickens, but the emission of noxious gases from excreta was significantly reduced in different treatments, especially the T_4 treatments. In T_4 treatment, hydrogen sulfide (H₂S), ammonia (NH₃) and methane (CH₄) were significantly reduced. The faces mineral contents, such as nitrogen (N), phosphorus (P), potassium (K), sulfur (S) and zinc (Zn), were significantly reduced compared to the T_1 treatment. ClO₂ also did not significantly affect the blood properties. The bactericidal effects of disinfectant using 60, 100 and 300 ppm were observed to be effective in 60 sec. **Conclusion:** Chlorine dioxide (ClO₂) is an alternative disinfectant which has no effect on broiler chicken production but significantly reduces noxious gases and microbial load from the environment, which may help to reduce pollution.

Key words: Broiler chicken, chlorine dioxide, disinfectant, poultry, virus zero

Citation: Hassan, M.R., M. Rahman, A.S. Naushinara, M.A.G. Rabbani and S. Alam *et al.*, 2024. Effect of chlorine dioxide on the performance, meat quality, gut health, microbial load, noxious gas emission and immune responses of broiler chicken. Int. J. Poult. Sci., 23: 100-108.

Corresponding Author: M.R. Hassan, Poultry Production Research Division, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh

Copyright: © 2024 M.R. Hassan *et al.* This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

¹Poultry Production Research Division, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh

²Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh

³Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh

⁴Multiple Health Pharma Limited, Mohakhali, Dhaka, Bangladesh

⁵Office of the Director Research, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh

INTRODUCTION

Bangladesh is a south-east Asian developing country based on agriculture. Poultry is one of the most significant agricultural subsectors in the country, with an average flock size of 6.9 birds being reared by around 87% of rural households. The commercial poultry sector achieved a significant annual average growth rate of 15-20%. In Bangladesh, industrial and backyard poultry sectors are approximately 60:40 for meat production¹. Therefore, broiler plays an important role in fulfilling the meat requirement and economic growth due to the advantage of a quick return. Currently, per capita meat consumption in Bangladesh is 4.5 kg per year². According to vision 2021, the target is to increase poultry meat consumption from 4.5 kilograms to 7.5 kg³. Bangladesh, use AGP unlawfully to improve growth and feed efficiency. Antibiotics are readily available to people in local drug stores and approximately 80% of all foodproducing animals receive AGP4. Food safety has been recognized as important issue; therefore, many poultry meat consumers avoid poultry meat and egg by being fed diets containing AGP. The AGP prohibition necessitates the search for more acceptable and safer antibiotic replacements that will boost growth while having no negative impact on chicken products. Chlorine dioxide is an oxygen-based oxidant, not chlorine. It eliminates viruses such as CORONA, SARS, Ebola, Norovirus, Influenza, Bird Flu and others. It also kills bacteria such as anthrax, E. coli, Staphylococcus aureus, fungi and protozoa. Per ppm, it is 2.5 times more potent than chlorine. It does not include any hazardous by-products. WHO, US EPA, KFDA, FDA and EU has approved this product. The USDA-Food Safety Inspection Service has shown that chlorine dioxide is effective in decreasing bacterial contamination of broiler carcasses⁵, washing water⁶ and surfaces⁷. When exposed to a wide variety of pH levels, it is also thought to be an effective bactericide that produces fewer chlorinated organic compounds than aqueous chlorine8. Moreover, bacteria do not acquire resistance to chlorine dioxide because it reacts with biological thiols, which are essential to all living organisms⁹. Chlorine dioxide kills microorganisms by acting directly on the 2-cell membrane and disrupting basic cellular

processes¹⁰. To minimise foodborne pathogens in the gastrointestinal system Barnhart et al.11 recommended that suitable disinfectants might be given orally during pre-slaughter feed withdrawal. In chickens and pigs, oral administration of chlorine dioxide up to 500 ppm (0.05%) exhibited no harmful effects on diet or feed intake^{12,13}, although having high bactericidal and virucidal action. In addition, a case study of chlorine dioxide administered with drinking water showed an improved feed conversion ratio and lower mortality in broilers¹⁴. However, no research has been conducted to investigate the effects of chlorine dioxide injection on the broiler diet. Ahmed et al.15 evaluated the effects of two different amounts of chlorine dioxide on growth, intestinal microbiota and pH, excreta microbiota and pH and odorous gas emissions from broiler excreta¹⁵. Therefore, the present study was undertaken to evaluate the effects of chlorine dioxide on the growth performance, meat quality, gut health, microbial load, noxious gas emission and immune responses of broiler chicken.

MATERIALS AND METHODS

Birds, treatments and management: To execute this research program, birds were obtained from commercial hatcheries/farms. Standard commercial diet and water were provided ad libitum. The temperature, ventilation and humidity were maintained as per the requirement of the bird. According to the treatments, diets were formulated to meet the nutrient requirements of the bird¹⁶. Different kinds of feed additives and disinfectants were inoculated with different levels to the basal diet. A total of 600, 1-day-old broiler chicks were procured from commercial hatcheries/farms, weighed without arousing and put into 30 cages. Chicks were randomly separated into 6 groups, each with 20 birds and were randomised to disinfectants containing (0,1 and 2 ppm) and time (1 and 2 times per day) in a 3×2 factorial arrangement of treatments (Table 1). The disinfectant virus zero (CIO₂ 6000 ppm) was dissolved in water and was given once or twice a day, depending on the therapy. The room temperature was kept at 33°C for the first week, then gradually decreased

Table 1: Experimental design

	Treatments (3×2 factorial arrangement)									
Replications	$T_1(A1\times X1)$	$T_2(A1\times X2)$	T ₃ (A2×X1)	T ₄ (A2×X2)	T ₅ (A3×X1)	$T_6(A3\times X2)$				
R_1	20	20	20	20	20	20				
R_2	20	20	20	20	20	20				
R_3	20	20	20	20	20	20				
R_4	20	20	20	20	20	20				
R ₅	20	20	20	20	20	20				

NB: Treatment A is the factor 1 with 3 concentration level and X is the factor 2 with two times

by 2-3 °C per week until it reached 22 °C, which was kept at by a circulating fan until the experiment was completed. Throughout the experiment, the mean relative humidity was kept between 60 and 65%.

Measurement of faces gas emission and litter quality: At the conclusion of the feeding trial, ten birds from each treatment were chosen at random and assigned to their own cage. Fresh excreta from broiler chicks were collected after a three-day adaptation period to determine excreta noxious gas emission. Excreta samples (1000 g) were kept in a 10L plastic bucket and fermented at room temperature for one day. The gases generated (NH₃, CO₂, O₂, H₂S) were measured using a BOSEAN (BH-4S, portable multi-gas detector) from about 5 cm above the excreta samples after the fermentation time. Based on the procedure described by Gogavekar et al.¹⁷, various litter parameters such as moisture, pH and nitrogen were estimated. At the second, fourth and fifth weeks, three samples from each replication of the various treatments were evaluated. The Kjeldahl method was used to determine the nitrogen content of the litter sample.

Measurement of blood properties: At 4-5 weeks of age, peripheral blood samples (2-3 mL) were obtained by wing vein puncture and allowed to clot for 2 hrs at room temperature, centrifuged at 1500 rpm for 15 min at 4° C and the serum was collected and stored at -20°C until analyses. Serum triglycerides (TG), total cholesterol (TCL), high-density lipoprotein (HDL), low-density lipoprotein (LDL), glucose, serum creatinine, albumin, total protein, ESR, PCV, Hemoglobin, RBC, Immunoglobulin A, Immunoglobulin G, calcium, phosphorus and Iron content were measured through outsourcing using a turbidimetric method as described by the manufacturer.

Meat quality and carcass characteristics: At the end of the feeding trial, birds were slaughtered and samples were collected for analysis. The pH value of each pectoral muscle sample was determined using a digital pH meter. Cooking loss was determined based on the following formula:

$$Cooking loss = \frac{Initial weight-cooked weight}{Initial weight} \times 100$$

Meat colour, CIE L* (lightness), a* (redness) and b* (yellowness) colour space values were determined using a Minolta colorimeter.

Determine the microbial load in meat:

Bactericidal activities of the tested solution (Virus-Zero) against *Salmonella enteritidis, Salmonella typhimurium,* and *Escherichia coli* (strain 1 and 2) in liquid reaction:

Bactericidal activities in an aqueous phase were investigated at one reaction temperature (RT) with two different contact durations (30 sec and 1 min) towards Salmonella enteritidis, Salmonella typhimurium, and Escherichia coli (strain 1 and 2). Four hundred micro-litters of each tested solution (60, 100 and 300 ppm) were mixed with 100 µl of each culture bacteria in a microtube, and incubated at the indicated time (30 sec and 1 min) at RT. Following incubation, the bactericidal inactivation was stopped by adding 500 µl of the blocking solution¹⁸. The viable bacteria in each sample, including the positive control, were counted (log10 CFU/ml) by plating 25 µl portions on a plate count agar plate after making a serial ten-fold dilution with sterile phosphate buffered saline (PBS), followed by 24 hr incubation at 37° C. For the positive control, 100 µl of each culture bacteria was mixed in 400 µl of PBS, and then 500 µl of the blocking solution was added (final 50% FBS and 0.5 M Tris-HC); subsequently, serial 10-fold dilutions were made. The viable bacteria in each sample was counted (log10 CFU/ml), as described above. Each test was carried out three times in triplicate as shown in the suspension test, data were shown in the result section, after statistical analyses.

Statistical analysis: All the data were analyzed using the Mixed Models procedures of Statistical Analysis System (SAS)¹⁹ and the difference was be determined by the Duncan Multiple Range Test²⁰. P-value 0.05 was considered significant.

RESULTS AND DISCUSSION

The current experiment was carried out to see how varying amounts of disinfectant in drinking water affected broiler chicken development, meat quality, blood characteristics, microbiological growth and noxious gas emission.

No significant differences in body weight, weight gain, feed intake and FCR were found after 30 days trial (Table 2). However, numerically higher body weight (1835.17 g) and weight gain (1796.68 g) were attained in the T_4 group which was treated with 1 mL ClO_2 per 3L of drinking water for 24 hrs. Similarly, relatively lower feed intake (2354.04 g) and better FCR was found in the T_4 treatment group, where birds received the same dose of ClO_2 for 24 hrs. Body weight gain was not significantly different from those of the treatment and control group. Sultan *et al.*²¹, used chlorine dioxide and recorded improved body weight. Similar results were reported in some

Table 2: Effects of CIO₂ in drinking water on the performance of broiler chicken (0-30 day)

	Treatments							
Parameters	 T ₁	T ₂	T ₃	T ₄	T ₅	T ₆	SEM	p-value
Body weight (g)								
7 day	171.6	163.68	164.45	157.54	161.34	168.66	0.153	0.089
21 day	918.74	909.31	921.56	904.73	900.55	905.12	4.773	0.631
30 day	1783.15	1796.32	1794.45	1835.17	1825.53	1778.43	8.294	0.562
Weight gain (g)								
0-7 day	132.85	124.86	125.3	119.05	122.97	131.07	1.44	0.069
8-21 day	747.14	745.63	757.11	747.19	739.21	736.46	4.22	0.814
22-30 day	826.2	848.43	833.75	891.81	886.74	835.72	8.28	0.237
0-30 day	1744.4	1757.5	1755.3	1796.68	1787.16	1740.84	8.17	0.360
Feed intake (g)								
0-7 day	147.02ª	137.38ab	127.82 ^b	132.94 ^{ab}	136.02ab	139.162ab	1.562	0.041
8-21 day	889.64	878.23	889.58	851.64	883.12	873.48	11.02	0.503
22-30 day	1361.73	1356.34	1396.73	1369.49	1379.02	1360.83	13.35	0.951
0-30 day	2398.39	2371.95	2414.13	2354.07	2395.08	2373.472	25.932	0.941
FCR								
0-7 day	1.106661648	1.1002723	1.02011173	1.11667367	1.10612344	1.061738	0.006	0.302
8-21 day	1.190727307	1.17783619	1.17496797	1.1397	1.1946	1.1860522	0.004	0.963
22-30 day	1.64818	1.5984	1.6752	1.5356	1.5551	1.6283	0.017	0.533
0-30 day	1.3749	1.3496	1.3753	1.3102	1.3402	1.3634	0.012	0.685
Mortality (%)	2	0	1	0	0	1		

Table 3: Effects of virus zero in drinking water on noxious gas emission of broiler chicken

	Treatments							
Parameters	T ₁	T ₂	T ₃	T ₄	T ₅	T ₆	SEM	p-value
O ₂ (%)	19.50	19.50	21.43	23.34	17.67	21.60	1.750	0.964
CH ₄ (%)	14.35	19.57	13.40	9.35	5.80	12.83	2.300	0.669
H ₂ S (ppm)	45.75ª	29.93ab	30.10 ^{ab}	22.60 ^b	33.56ab	30.69ab	3.250	0.046
CO (ppm)	786.00	843.75	793.30	741.60	763.85	695.45	54.660	0.986
NH ₃ (ppm)	82.63ª	79.17ª	72.46ab	59.72 ^b	84.68ª	71.32 ^{ab}	5.260	0.038
CH ₄ S (ppm)	76.97ª	54.85 ^b	52.35 ^b	49.75°	50.70 ^b	40.90ab	4.230	0.029
NO ₂ (ppm)	0.21	0.21	0.14	0.11	0.21	0.25	0.020	0.651
CO ₂ (%)	3.89	4.58	4.42	4.72	4.47	4.55	0.163	0.792
SO ₂ (ppm)	15.09	17.14	15.93	16.52	15.37	15.07	0.775	0.972
рН	6.70	6.29	6.22	5.78	6.46	6.10	0.211	0.901
Temperature (°C)	34.92	35.17	35.42	34.75	35.00	34.67	0.356	0.995

previous studies²²⁻²⁵. WHO²⁶ also found that chlorine dioxide did not adversely affect water intake, so no significant change was found in body weight and weight gain. In another experiment, Ahmed et al.15, used chlorine dioxide and observed that the body weight and weight gain of broiler chicks was not different significantly. Demeckova et al.12, reported that 300 ppm chlorine dioxide (CIO₂) in an oral supplement had no negative impact. In present study, a significant difference was found in the first 7 days treatment trial. But on the other hand, there was no significant difference in control and other treatment using chlorine dioxide. According to Islam et al.27, adding disinfectant in drinking water can reduce the FCR. Ahmed et al.15, reported that dietary chlorine dioxide (0.05 and 1%) significantly reduced the FCR without a negative impact on the growth rate of broiler. But Sultan et al.21, mentioned that chlorine dioxide did not alter FCR.

After the feeding trial, ten birds from each treatment were selected randomly and assigned to each cage. After a threeday adaptation period, fresh excreta from birds were collected in order to determine the 22 noxious gases they emit. Excreta samples (1000 g) were placed in a 10 L plastic bucket and left to ferment at room temperature for one day. After the fermentation, the gases generated (NH₃, CO₂, O₂, H₂S, SO₂, CH₄S, CO, Cl₂) were measured using a Geotech (Biogas 5000) and multi-gas detector (BH-4S) about 5 cm above the excreta samples. CIO₂ has a significant impact on reducing H₂S, NH₃ and CH₄S gas emissions when it ferments, while others have a negligible impact (Table 3). H₂S and NH₃ gas emissions were the lowest in T₄ group (22.60 and 59.72 ppm, respectively), whereas CH₄S emissions were considerably lower in T₆ group treated with 1 ml of chlorine per 6L of drinking water for 24 hrs. Ahmed et al. 15, reported that 0.05% chlorine dioxide

Table 4: Effects of virus zero in drinking water on mineral content in the faeces

Parameters	Treatments							
	T ₁	T ₂	T ₃	T ₄	T₅	T ₆	SEM	p-value
Nitrogen (%)	2.940ª	2.800a	2.240ab	1.260 ^b	2.660ª	2.800a	0.589	0.028
Phosphorus (%)	1.220 ^a	0.530 ^b	0.760ab	0.510 ^b	0.700 ^{ab}	0.540 ^b	0.358	0.019
Potassium (%)	6.640a	5.810 ^a	4.560ab	3.320 ^c	4.150 ^{bc}	3.320 ^c	0.874	0.003
Sulfur (%)	2.590 ^a	1.350 ^{bc}	1.980 ^{ab}	1.050€	1.300 ^{bc}	1.650 ^b	0.781	0.012
Zinc (%)	0.004	0.005	0.002	0.003	0.005	0.003	0.001	0.087

Table 5: Effects of virus zero in drinking water on meat quality of broiler chicken

	Treatments							
Parameters	T ₁	T ₂	T ₃	T ₄	T ₅	T ₆	SEM	p-value
Carcass characteristics								
Body weight (g)	1773.26	1786.38	1784.42	1826.24	1816.51	1769.32	17.480	0.124
Carcass weight (g)	1250.44	1276.64	1295.59	1356.03	1338.11	1252.58	13.590	0.587
Dressing (%)	70.50 ^b	71.57 ^{ab}	72.70 ^{ab}	74.20 ^a	73.80 ^a	70.79 ^b	2.430	0.038
Breast meat (%)	23.86	22.20	21.00	23.50	23.30	23.18	0.910	0.249
Thigh meat (%)	19.26	19.29	20.13	19.89	20.25	19.41	0.870	0.247
Drumstick (%)	12.56	11.60	12.26	12.91	13.22	12.87	0.690	0.359
Wing (%)	12.26	12.60	11.92	11.89	12.56	12.38	0.640	0.289
Liver (%)	2.36	2.30	2.20	2.50	2.41	2.41	0.160	0.817
Heart (%)	0.52	0.55	0.53	0.63	0.64	0.53	0.030	0.598
Fat pad (%)	2.80	2.83	2.77	2.97	2.41	2.82	0.170	0.378
Gizzard (%)	2.46	2.19	2.21	2.65	2.11	2.31	0.150	0.591
Spleen (%)	0.11	0.11	0.09	0.11	0.16	0.11	0.010	0.428
Shank (%)	5.06	5.08	4.18	5.28	5.69	5.11	0.380	0.241
Bursa (%)	80.0	0.07	0.06	0.09	0.11	0.08	0.004	0.127
Meat quality								
Cooking loss (%)	12.01	10.65	10.30	9.07	11.26	11.47	0.580	0.421
Meat color (CIE)								
L*	48.83	49.55	47.88	47.37	49.53	48.24	0.520	0.663
a*	1.64 ^b	2.68ab	2.99ab	3.64ª	3.53ª	2.64ab	0.197	0.003
b*	6.95	7.82	7.03	8.37	7.40	6.97	0.305	0.565
рН	5.69 ^b	6.05ª	6.05ª	6.0a	6.09ª	5.94 ^{ab}	0.013	0.030

significantly increased H_2S emissions from broiler faeces compared to the non-additive group $(T_4>T_2>T_3>T_6>T_5>T_1)$. The range of NH_3 was found as $T_4>T_3>T_6>T_2>T_1>T_5$.

The percentage of Nitrogen, Phosphorus, Potassium and Sulfur content in poultry faeces was found to be significantly lower (1.26, 0.51, 3.32 and 1.05%, respectively) in T_4 while the non-significant result was observed in the case of Zinc percentage (Table 4). CIO_2 in drinking water significantly reduced the mineral content in faces. The major nutrient such as nitrogen, phosphorus, potassium, sulfur was significantly reduced in faces. The result indicated that chlorine dioxide has reduced the adverse impact on faeces by using chlorine dioxide (CIO_2).

Table 5 shows the carcass characteristics of broiler chickens. The presence of disinfectants in drinking water did not affect the features of carcasses. T_4 and T_5 had much greater dressing percentages than those of the other treatments. The disinfectant treatments did not affect carcass characteristics (breast, thigh, drumstick, wings, fat pad, spleen, shank and bursa weight percentage). The T_4 and T_5 considerably enhanced muscle pH and colour (CIE) (a*redness)

compared to the other treatments. Disinfectant treatments did not affect cooking loss, CIE (L*lightness and b*yellowness). Results of the current study showed no significant differences in meat quality. Similarly, Sultan $et al.^{21}$, reported that chlorine dioxide (ClO₂) therapy did not affect relative weight, liver, heart, or gizzard. In contrast, Maékiewicz and Dziubek²⁸ found that carcass output was much higher and Cengiz $et al.^{23}$, observed that gizzard weight increased due to ClO₂ being a disinfectant.

On the other hand, various levels of CIO_2 significantly affected different blood properties (HDL-cholesterol, LDL-cholesterol, total protein and Phosphorus) of broiler chicken (Table 6). Significantly higher amount of HDL-cholesterol (135.00 mg/dL), Phosphorus (1.93 mg/dL) and lower amount of LDL-cholesterol (2.75 mg/dL) were found in T_4 group. Levels of IgA in blood was significantly (p<0.05) higher in T_3 , T_4 and T_6 treatments than those of T_1 and T_2 treatment. However, serum IgG levels were not significantly influenced by the addition of disinfectant in drinking water, instead, this value numerically increased as compared to T_3 and T_4 treatments.

Table 6: Effect of virus zero on the blood properties of broiler chicken

	Glucose	Cholesterol	Triglyceride	HDL-cholesterol	LDL-cholesterol	Total	Albumin	Calcium	Phosphorus	Iron
Treatments	(mmo1/L)	(mg/dL)	(mg/dL)	(mg/dL)	(mg/dL)	protein (g/dL)	(g/dL)	(mg/dL)	(mg/dL)	(mg/dL)
T ₁	10.170	130.000	47.750	68.3300°	47.0000°	2.5700 ^b	1.450	6.300	1.550 ^b	120.250
T_2	11.760	140.330	59.660	115.0000 ^b	13.6600 ^b	2.9000 ^a	1.480	6.400	1.820 ^{ab}	122.660
T ₃	9.430	134.660	55.330	107.3300 ^b	16.6600 ^b	2.8000 ^a	1.530	5.900	1.660 ^{ab}	121.000
T ₄	10.650	143.000	55.500	135.0000°	2.7500°	2.5000bc	1.500	6.170	1.930 ^a	146.330
T ₅	11.950	118.750	74.500	97.0000 ^b	8.7500 ^{bc}	2.4700 ^{bc}	1.350	6.970	1.550 ^b	127.000
T_6	10.300	131.000	60.330	73.2500 ^c	43.3300°	2.4000°	1.600	6.660	1.600 ^b	134.250
SEM	1.710	32.950	8.840	9.3100	4.0200	0.8400	0.480	1.400	0.680	12.580
p-value	0.272	0.060	0.092	0.0001	0.0001	0.0001	0.734	0.522	0.043	0.102

Table 7: Effect of virus zero on humoral immune responses of broiler chicken

	Treatments	Treatments								
Parameters	T ₁	T_2	T_3	T_4	T ₅	T_6	SEM	p-value		
IgA (mg/dL)	10.69 ^b	10.87 ^b	22.40ª	20.18 ^a	18.19 ^{ab}	20.59ª	1.457	0.043		
IgG (mg/dL)	2.08	2.18	3.25	3.24	2.77	2.35	0.169	0.152		

Table 8: Bactericidal effect of virus zero (ClO₂) solution against some bacteria (60 ppm)

Bacteria	l titer	\log_{10}	(CFU/mL)]	
----------	---------	-------------	-----------	--

			Contact time/treatment time		
CIO ₂ solution	Tested bacteria	Positive control	30 sec	60 sec	
60 PPM	E. coli-1	8.73±0.34	6.73±0.48	5.71±0.46*	
	E. coli-2	8.91±0.45	6.93±0.17	5.79±0.13*	
	S. enteritidis	8.87±0.27	6.80 ± 0.28	5.63±0.17*	
	S. typhimurium	8.49±0.13	6.24±0.14	5.41±0.58*	

Blood properties such as HDL, LDL and Total protein were significantly differ in different treatments but other parameters did not alter significantly compared with control treatment. Which indicated that CIO₂ did not badly impact on the chickens' health properties.

We measured total serum antibody levels (IgG and IgA) at 30-days of age (Table 7). A significant (p<0.05) increase in IgA levels in blood was observed in T_3 , T_4 and T_6 treatments when disinfectant was mixed with drinking water compared to the T_1 and T_2 treatments. Nevertheless, the mixing of disinfectant in drinking water did not affect serum IgG levels significantly but T_3 and T_4 treatments numerically increased them. IgA and IgG levels did not alter within the control treatment, respectively, revealing that CIO_2 treatment did not affect the humoral immune system.

We also evaluated the bactericidal efficacy of chlorine dioxide against *Salmonella enteritidis*, *Salmonella typhimurium* and *Escherichia coli* (strain 1 and 2) in liquid reaction and found that 60 PPM ClO₂ solution could not able to inactivate our tested bacteria at an adequate level [>3 log₁₀ colony-forming units (CFU)/mL] within 30 sec contact time but it could be able to inactivate the tested bacteria (>2 log₁₀ CFU/mL) within 30 and 60 sec contact time (Table 8). On the other hand, 100 and 300 PPM ClO₂ solution could be able to inactivate our tested bacteria at a sufficient level

(>3 \log_{10} CFU/mL) in both contact times, even in the presence of organic materials (nutrient broth) (Table 8). In control bacteria, we found a high titer (8.8 \log_{10} CFU/mL) but after treatment with CIO₂ solution, we found greater than >5 \log_{10} CFU/mL bacterial reduction at 60 sec contact time.

A study conducted by Sultan et al.21, found pathogenic microorganisms (Salmonella and E. coli) on day 21 (2.63 and 3.73 CFU/g) and day 28 (2.58 and 3.53 CFU/g). Chlorine dioxide significantly disrupted the permeability of the outer membrane of the pathogens²⁹. similar results were reported by Dibner and Buttin²⁹, who used organic acidulants and observed reduction of pathogenic load in the intestinal tract of broilers. Results of the present study are consistent with Isabel and Santos³⁰ who used plant-derived essential oils and other acidulants and observed the reduction of pathogenic microorganisms in the broiler gut. Similar results were reported by Khan et al.31 and Fronte et al.25, who used acidulants in poultry drinking water and observed significant reduction in Salmonella and E. coli. An increase in villus height (920.03 µm) and goblet cell number (80.25) was also noted in this study. This effect is possibly due to the prevention of bacterial colonization as these microorganisms cause sloughing of the intestinal mucosa through pathogenic inflammation, thereby impairing the digestion, goblet cell function and nutrient absorption³². The intestinal mucosa is

Table 9: Bactericidal effect of virus zero (CIO₂) solution against some bacteria (100 ppm)

		Bacterial titer [log ₁₀ (CFU/mL)]	
CIO ₂ solution			Contact time/treatment ti	ime
	Tested bacteria	Positive control	30 sec	60 sec
100 PPM	E. coli-1	8.73±0.34	5.70±0.26*	4.91±0.17*
	E.coli-2	8.91 ± 0.45	6.13±0.11	4.79±0.26*
	S. enteritidis	8.87±0.27	5.81±0.21*	4.63±0.14*
	S. typhimurium	8.49±0.13	6.04 ± 0.29	4.47±0.18*

Table 10: Bactericidal effect of virus zero (CIO₂) solution against some bacteria (300 ppm)

		Bacterial titer [log ₁₀ (CFU/m	L)]	
			Contact time/treatment time	
CIO ₂ solution	Tested bacteria	Positive control	30 sec	60 sec
300 PPM	E. coli-1	8.73±0.34	4.77±0.29*	2.83±0.11*
	E.coli-2	8.91 ± 0.45	5.03±0.21*	3.07±0.17*
	S. enteritidis	8.87±0.27	4.33±0.34*	2.93±0.26*
	S. typhimurium	8.49±0.13	4.94±0.29*	3.49±0.18*

Bacterial titer (\log_{10} CFU/mL), *Asterisk indicates effective bacterial reduction (\geq 3 \log_{10} CFU/mL), Bacterial titer \leq 2.6 \log_{10} CFU/mL indicates bacterial counts under detection limit, Both effective and under detection limit are significantly different (p<0.05) from bacterial positive control titer

inhabited by many microorganisms including both beneficial and pathogenic bacteria. Pathogens often cause infections, impair bird health and cause necrotizing enterocolitis. Necrotizing enterocolitis impairs growth³³ and it can be prevented by using high-quality acidulants^{21,23}. The basic mode of bacterial inactivation by chlorine dioxide (ClO₂) is the inhibition of bacterial protein synthesis³⁴. In particular, chlorine dioxide (CIO₂) directly affects the cell membrane by altering (at high concentrations) or destroying (at low concentrations)¹⁰ the permeability of the cell membrane, penetrating the cell and interfering with protein synthesis. However, no significant effect of chlorine dioxide was found on Gram-positive Lactobacillus and Bacillus, except for a significant reduction in cecal bacillus levels. This may be because gram-positive bacteria have thicker walls than gram-negative bacteria^{15,35}. Ko et al.36, also reported that chlorine dioxide alters the properties of microorganisms and reduces the growing population of microorganisms. During treatment, 3.0, 50 and 100 ppm chlorine dioxide (ClO₂) was used and, as a result, 6.1, 5.8 and 4.5 log CFU/g mold or yeast, 6.7, 6, 5.3 log CFU/g total bacterial counts and 5.6, 5.2 and 4.2 CFU/g coliforms were found, respectively. This result showed a declining trend in the microbial population. Current study also showed that chlorine dioxide treatment also reduced microbial growth. There was a significant decrease in the growth rate of *E. coli-*1, 2 and S. enteritidis and S. Typhimurium when 60, 100 and 300 ppm CIO₂ solutions were used.

The *E. coli*-1, *E. coli*-2, *S. enteritidis*, *S. typhimurium* were reduced in 60 sec when 60 and 100 ppm ClO_2 was used (Table 9 and 10). The reduction levels were 4.91 ± 0.17 , 4.79 ± 0.26 , 4.63 ± 0.14 , 4.47 ± 0.18 CFU/mL, respectively when

 100 ppm CIO_2 was used. The reduction levels were lower when 300 ppm CIO_2 was used (Table 10). It was indicated that CIO_2 reduced bacteria significantly, which were more harmful. So, it was an effective disinfectant for reducing microbial load in broilers.

CONCLUSION

This study indicated that T_4 treatment group (1 mL chlorine dioxide in 3-litre water for 24 hrs) was better than other treatments. It reduced the noxious gas emission (NH₃, H₂S), which caused terrible odour and also harmful to the environment. It also reduced the microbial load effectively by using 300 ppm CIO_2 within a minute. Chlorine dioxide is an excellent alternative disinfectant which has no effect on the production performance of broiler chicken but has significantly reduced noxious gases and microbial load from the environment, which may help to reduce pollution.

REFERENCES

- Huque, K.S., M.A. Saleque and R. Khatun, 2011. Commercial poultry production in Bangladesh. Proceedings of the 7th International Poultry Show and Seminar, March 25-27, 2011, Dhaka, Bangladesh, pp: 19-28.
- IDNBL., 2016. Bangladesh economic review 2016 economic adviser's wing finance division, ministry of finance government of the people's republic of Bangladesh. https://www.academia.edu/31644701/BANGLADESH_ECO NOMIC_REVIEW_2016_Economic_Advisers_Wing_Finance _Division_Ministry_of_Finance_Government_of_the_Peop les_Republic_of_Bangladesh.

- 3. BBS., 2016. Bangladesh statistics 2016. Government of the People's Republic of Bangladesh.
- Islam, K.B.M.S., S. Shiraj-Um-Mahmuda and M. Hazzaz-Bin-Kabir, 2016. Antibiotic usage patterns in selected broiler farms of Bangladesh and their Public Health Implications. J. Public Health Dev. Countries, 2: 276-284.
- GED, 2015. Seventh five year plan: FY2016-FY2020. Planning Commission. Government of the People's Republic of Bangladesh. http://nda.erd.gov.bd/en/c/publication/seventhfive-year-plan-fy2016-fy2020
- Berrang, M.E., R.J. Meinersmann, N.A. Cox and P.J. Fedorka-Cray, 2011. Application of chlorine dioxide to lessen bacterial contamination during broiler defeathering. J. Applied Poult. Res., 20: 33-39.
- Reina, L.D., H.P. Fleming and E.G. Humphries, 1995.
 Microbiological control of cucumber hydrocooling water with chlorine dioxide. J. Food Protec., 58: 541-546.
- 8. Foschino, R., I. Nervegna, A. Motta and A. Galli, 1998. Bactericidal activity of chlorine fioxide against *Escherichia coli* in water and on hard surfaces. J. Food Protect., 61: 668-672.
- Kim, J., M.R. Marshall, W.X. Du, W.S. Otwell and C.I. Wei, 1999. Determination of chlorate and chlorite and mutagenicity of seafood treated with aqueous chlorine dioxide. J. Agric. Food Chem., 47: 3586-3591.
- Noszticzius, Z., M. Wittmann, K. Kály-Kullai, Z. Beregvári, I. Kiss, L. Rosivall and J. Szegedi, 2013. Chlorine dioxide Is a sizeselective antimicrobial agent. PLoS ONE, Vol. 2018, 10.1371/journal.pone.0079157.
- 11. Barnhart, E.T., L.L. Sarlin, D.J. Caldwell, J.A. Byrd, D.E. Corrier and B.M. Hargis, 1999. Evaluation of potential disinfectants for preslaughter broiler crop decontamination. Poult. Sci., 78: 32-37.
- Demeckova, V. C. A. Moran, C. Caveney, A. C. Campbell, V. Kuri and P. H. Brooks, 2001. The Effect of Fermentation and/or Sanitization of Liquid Diets on the Feeding Preferences of Newly Weaned Pigs. In: Digestive Physiology of Pigs: Proceedings of the 8th Symposium, Lindberg, J.E. and B. Ogle (Eds.), CABI Publishing, Wallingford, ISBN: 978-0-85199-720-9, pp: 291-293.
- 13. Chen, R.S. and H.J. Tsai. 2008. Germicidal activity and chicken toxicity of chlorine dioxide. Taiwan Vet. J., 34: 142-148.
- Gannon, G., 2010. Using CLO₂IX^{*} chlorine dioxide to increase production in a broiler barn. Eco-Farm Water Products Ltd., Alberta, Canada. https://clo2ix.com/wp-content/uploads/ 2024/01/clo2ix-case_study-broilers.pdf.
- Ahmed, S.T., G. Kim, M.M. Islam, H.S. Mun, A.B.M.R. Bostami and C.J. Yang, 2015. Effects of dietary chlorine dioxide on growth performance, intestinal and excreta microbiology and odorous gas emissions from broiler excreta. J. Applied Poult. Res., 24: 502-510.

- 16. NRC., 1994. Nutrient Requirements of Poultry. 9th Edn., National Academy Press, Washington, DC., USA., ISBN-13: 9780309048927, Pages: 176.
- Gogavekar, S.S., S.A. Rokade, R.C. Ranveer, J.S. Ghosh, D.S. Kalyani and A.K. Sahoo, 2014. Important nutritional constituents, flavour components, antioxidant and antibacterial properties of *Pleurotus sajor-caju*. J. Food Sci. Technol., 51: 1483-1491.
- 18. Ota, M., C. Toyofuku, C. Thammakarn, N. Sangsriratanakul and M. Yamada *et al.*, 2016. Calcinated egg shell as a candidate of biosecurity enhancement material. J. Vet. Med. Sci., 78: 831-836.
- 19. SAS Institute Inc., 2004. SAS/STAT 9.1 User's Guide. SAS Institute Inc., Cary, NC., USA Pages: 5121.
- Steel, R.G.D. and J.H. Torrie, 1980. Principles and Procedures of Statistics: A Biometrical Approach. 2nd Edn., McGraw Hill Book Co., New York, USA., ISBN-13: 9780070609266, Pages: 633.
- 21. Sultan, A., M. Bilal, S. Khan and Z.U. Hassan, 2015. Effect of chlorine dioxide (Dutrion®) on growth performance, gut histomorphology and pathogenic microbial count of meat type birds. Pak. Vet. J., 35: 183-187.
- 22. Dibner, J.J. and J.D. Richards, 2005. Antibiotic growth promoters in agriculture: History and mode of action. Poult. Sci., 84: 634-643.
- 23. Cengiz, O., B.H. Koksal, O. Tatli, O. Sevim and H. Avci *et al.*, 2012. Influence of dietary organic acid blend supplementation and interaction with delayed feed access after hatch on broiler growth performance and intestinal health. Vet. Med., 57: 515-528.
- 24. Yang, Y., P.A. Iji and M. Choct, 2009. Dietary modulation of gut microflora in broiler chickens: A review of the role of six kinds of alternatives to in-feed antibiotics. World's Poult. Sci. J., 65: 97-114.
- 25. Fronte, B., I. Bayram, A.B. Akkaya, G. Rossi and M. Bagliacca, 2013. Effect of corn particle size and inclusion of organic acid in the diet on growth performance and gastrointestinal structure in young chicks. Italian J. Anim. Sci., Vol. 12, No. 4.
- 26. WHO., 2004. Inheriting the World: The Atlas of Children's Health and the Environment/Bruce Gordon, Richard Mackay, Eva Refuess. World Health Organization, Switzerland Page: 64.
- Islam, M.Z., Z.H. Khandaker, S.D. Chowdhury and K.M.S. Islam, 2008. Effect of citric acid and acetic acid on the performance of broilers. J. Bangladesh Agric. Univ., 6: 315-320.
- 28. Maćkiewicz, J. and A.M. Dziubek, 2005. Application of chlorine dioxide in infiltration water treatment. Environ. Prot. Eng., 31: 5-12.
- 29. Dibner, J.J. and P. Buttin, 2002. Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. J. Applied Poult. Res., 11: 453-463.

- Isabel, B. and Y. Santos, 2009. Effects of dietary organic acids and essential oils on growth performance and carcass characteristics of broiler chickens. J. Applied Poult. Res., 18: 472-476.
- 31. Khan, S., A. Sultan, A. Muhammad, I. Naila and M. Mobashar *et al.*, 2013. Lower illeal microflora and growth performance of broilers supplemented with organic acid blend (Aciflex*) during starter phase. Greener J. Agric. Sci., 3: 794-800.
- 32. Paul, S.K., G. Halder, M.K. Mondal and G. Samanta, 2007. Effect of organic acid salt on the performance and gut health of broiler chicken. J. Poult. Sci., 44: 389-395.
- 33. Garrido, M.N., M. Skjervheim, H. Oppegaard and H. Sorum, 2004. Acidified litter benefits the intestinal flora balance of broiler chickens. Applied Environ. Microbiol., 70: 5208-5213.
- 34. EFSA., 2002. Assessment of the possible effect of the four antimicrobial treatment substances on the emergence of antimicrobial resistance. EFSA J., 659: 1-26.
- 35. Pincus, S.H., R.L. Cole, M.R. Wessels, M.D. Corwin and E. Kamanga-Sollo *et al.*, 1992. Group B streptococcal opacity variants. J. Bacteriol., 174: 3739-3749.
- 36. Ko, J.K., Y.H. Ma and K.B. Song, 2005. Effect of chlorine dioxide treatment on microbial growth and qualities of chicken breast. Prevent. Nutr. Food Sci., 10: 122-129.