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Abstract
Background and Objective: Flavin containing monooxygenase 3 (FMO3) is an excellent candidate gene that affects fishy odor and fatty
acid composition. It has been reported that down regulation of FMO3 can inhibit fatty acid oxidation. The aim of this study was to
investigate the association and expression of the FMO3 gene as a candidate gene for fatty acid composition in Indonesian Cihateup ducks.
Methodology: A total of one hundred Indonesian Cihateup ducks were used in this study. Tissues from breast muscles were used for
genomic DNA isolation and fatty acid composition analysis. Results: Association analysis showed that the SNP g.849A>G was significantly
associated with unsaturated fatty acids (palmitoleic, oleic, linoleic, linolenic and arachidonic acid) and saturated fatty acids (lauric, palmitic
and arachidic acid). Compared to the GG genotype, the AG genotype ducks exhibited greater levels (p<0.05) of lauric acid (C14:0), palmitic
acid (C16:0), arachidonic acid (C20:4n6) palmitoleic acid (C16:1), oleic acid (C18:1), linolenic acid (C18:3) and linoleic acid (C18:2, p<0.05)
but not pentadecanoic acid (C15:0). Furthermore, to analyze the mRNA expression of FMO3 in liver tissues, the ducks were divided into
two groups according to the genotypes AG and GG, where AG had relatively favourable unsaturated fatty acid composition. FMO3 mRNA
expression was higher (p<0.01) in animals with the AG genotype. Conclusion: These results will improve the understanding of functions
of the FMO3 gene in maintaining muscular fatty acid composition and will shed light on FMO3 as a candidate gene in the selection of
ducks with unsaturated fatty acids for meat quality improvement.
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INTRODUCTION

Fatty acid composition plays an important role in meat
quality in terms of not only the nutritional value but also the
flavor quality of meat1. Cameron et al.2 reported that
polyunsaturated fatty acids (PUFA), including linoleic acid
(C18:2, C20:4 and C22:6), show a positive correlation with the
flavor of meat and are associated with human health2. The
high intake of PUFA and monounsaturated fatty acids (MUFA)
can increase hepatic low density lipoprotein (LDL) receptor
activity, which decreases the circulating concentration of LDL
cholesterol3. In contrast, the composition and total amount of
saturated fatty acids (SFA) have been identified as dietary risk
factors4, which may be related to various cancers and
especially coronary heart disease. A deeper knowledge of the
genetic mechanisms of fatty acids is important as it may
generate new opportunities for more effective marker assisted
breeding, namely, selecting ducks with higher PUFA and lower
SFA, leading to economic benefits in the duck production
industry. To produce and select animals having higher PUFA
and lower SFA in meat, marker assisted selection has been
applied to breeding techniques by the direct selection of
genes that affect the meat quality. The FMO3 enzyme is the
predominant enzyme in the adult human liver involved in the
degradation of trimethylamine (TMA)5. FMO3 is also reported
to play an important role in fatty acid oxidation. Wang et al.6

determined that the down regulation of FMO3 can inhibit fatty
acid oxidation. Considering that fat deposition in animals can
be attributed to the balance among dietary absorbed fat,
endogenous lipogenesis and lipolysis, higher fat deposition
may be caused by diminished fatty acid oxidation or increased
adipogenesis of adipocytes7.
Several studies have identified FMO3 as the causative

gene of the fish odor traits in cow milk and chicken eggs8. A
nonsense mutation (R238X) in the cattle FMO3 gene was
found to underlie the fishy off-flavor in cow milk9. In chickens,
a nonsynonymous mutation in the chicken FMO3 gene
(T329S) has been verified to be associated with elevated levels
of TMA and fishy taint in the chicken egg yolk8. Moe et al.10

reported that the nonsense mutation Q319X was significantly
associated with the elevated TMA content in the quail egg
yolk. In pigs, the FMO3 gene was located in a quantitative trait
loci (QTL) region correlated with  off-flavor,  which  indicated
an association between the FMO3 gene and off-flavor in
pigs11.  Notably,  no  study  has  investigated  the  association
and expression of these genes with regard to fatty acid
composition.  However,  functional  and  positional  studies
have suggested that this gene could be important candidate
gene for fatty acid composition.

Duck meat generally presents off-flavor due to fatty acids
and the FMO3 gene is thought to be the candidate gene for
these compounds. Therefore, the present study aimed to
study the association of FMO3 with the fatty acid composition
in an Indonesian Cihateup duck population. Furthermore, to
highlight the functions of FMO3, the mRNA expression
differences in the FMO3 gene were investigated in the liver
tissues of ducks with divergent unsaturated fatty acid
compositions based on genotype.

MATERIALS AND METHODS

Animals: One hundred Indonesian Cihateup ducks were used
in this study. The ducks were reared under the same feeding
conditions until they were 12 weeks old and had
approximately 1.6 kg of slaughter weight per duck. The
carcass and meat quality data were collected according to the
guidelines of the Indonesian performance test with the
number 13-2016 IPB. Tissues from breast muscles were used
for  genomic  DNA  isolation  and  fatty  acid  composition
analysis.

Fatty acid composition analysis: Fatty acid composition was
determined for each sample using the extraction method
described by Folch et al.12. Muscle samples (~100 g) were
collected and ground for FA composition analysis. The lipids
were extracted by homogenizing the sample with a
chloroform and methanol (2:1) solution. NaCl at 1.5% was
added and the lipids were isolated. The isolated lipids were
methylated and the methyl esters were formed according to
Kramer  et  al.13.  The  FA  composition  was  quantified  using
gas     chromatography     (GC-2010     Plus-Shimadzu     AOC
20i    autoinjector)    with    an    SP-2560    capillary    column
(100 m×0.25 mm in diameter with 0.02 mm thickness,
Supelco,  Bellefonte,  PA).  The  initiating  temperature  was
70EC with gradual warming (13EC minG1) up to 175EC, holding
for 27 min and later, the temperature was further increased by
4EC minG1 until 215EC was reached and held for 31 min. The
FAs were identified by comparing the retention time of methyl
esters of the samples with standards of C4‒C24 (F.A.M.E mix
Sigma®),  vaccenic  acid  C18:1  trans-11  (V038-1G,  Sigma®)
C18:2  trans-10 cis-12  (UC  61  M  100  mg),  CLA  C18:2  cis-9,
trans-11 (UC 60 M 100 mg) (Sigma®) and tricosanoic acid
(Sigma®). The FAs were quantified by normalizing the area
under the curve of methyl esters using the software GS
solution  2.42,  Shimadzu  GC-2010.  The  FAs  were  expressed
as percentages of the total FA methyl esters. The analysis of
the  FA  composition  in  meat  was  performed  at  the
Integrated Laboratory in the Bogor Agricultural University,
Bogor, Indonesia.
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DNA isolation, SNP identification and genotyping: A
nonsynonymous  single  nucleotide  polymorphism  detected
by Wang et al.14 was used in this study, this polymorphism was
an arginine (A) transversion to guanine (G) at g.849A>G in
exon 6. For PCR amplification, the primer was designed from
the duck FMO3 genomic sequence using the Primer3 tool15.
For  genotyping, genomic DNA was isolated from the breast
muscle (BM) tissue of the Indonesian Cihateup ducks
according   to   the   standard   phenol-chloroform   method16.
In silico analysis of the genomic sequence, performed by
comparing several sequences from a publicly available
database (NCBI), revealed the possible targets for PCR
amplification. A working solution with a final concentration of
50 ng µLG1 was prepared and stored at 4EC for further analysis.
Polymerase chain reactions (PCRs) were performed in a 20 µL
volume containing 2 µL of genomic DNA, 1×PCR buffer (with
1.5 mM MgCl2), 0.25 mM of dNTPs, 5 pM of each primer and
0.1 U of Taq DNA polymerase (GeneCraft). The genotyping of
the Indonesian Cihateup duck population was performed by
the PCR-RFLP method. The PCR product was analyzed using
1.5% agarose gel (Fischer Scientific Ltd.) and digested by using
the restriction enzyme AlwNI for FMO3 (New England Biolabs).
Digested PCR-RFLP products were resolved in 3% agarose gels.
The details of the PCR-RFLP pattern, GenBank, accession
numbers and primer sequences used in this study are listed in
Table 1.

Statistical analysis: Allele and genotype frequencies were
determined for the SNP identified in the FMO3 gene by
statistical analyses. The association of the genotypes with the
fatty acid composition was calculated by analyzing the
variances of the quantitative traits. For these analysis, the
generalized linear model (PROC GLM) of SAS (version 9.2 SAS
Inst Inc., Cary, USA) was used. The model was as follows:

Yijk = µ+genotypei+sexj+eijk

where Yijk is the fatty acid composition, µ is the overall mean,
genotypei is the fixed effect of the i-th genotype (i = 1, 2 and
3) sexj is the fixed effect of the j-th sex (j = male/female),
which is the combination of location and penning (group,
individual) and eijk is the residual error.
Least squares mean values for the loci genotypes were

compared  by  t-tests  and  p-values  were  adjusted  by  the
Tukey-Kramer correction17,18.

mRNA expression study by qRT-PCR: Since fatty acids are
metabolized and catabolized in the liver, the liver tissues from 
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ducks with divergent phenotypes were selected for the gene
expression study. For this purpose, 3 ducks with extremely
high FA and 3 ducks with extremely low FA were selected.
Total  RNA  was  extracted  from  the   liver   tissues   of   these
6 ducks using Tri-Reagent according to the manufacturer’s
instructions (Sigma). Total RNA was treated using on column
RNase-free DNase (Promega) and was quantified using a
spectrophotometer (NanoDrop, ND 8000, Thermo-Scientific).
RNA quality was assessed using an Agilent 2100 Bioanalyzer
and an RNA Nano 6000 LabChip kit (Agilent Technologies).
Furthermore, RNA integrity was examined by 2% agarose gel
electrophoresis.  In  all  cases,  cDNA  was  synthesized  by
reverse transcription PCR using 2 µg of total RNA, SuperScript
II reverse transcriptase (Invitrogen) and an oligo(dT) 12 primer
(Invitrogen). Gene specific primers for FMO3 for the qRT-PCR
were designed by using the Primer3 software15 (Table 1). In
each run, the 96 well microtiter plate contained each cDNA
sample and no template control. The qRT-PCR was conducted
with the following program: 95EC for 3 min and 40 cycles of
95EC for 15 sec/60EC for 45 sec on the StepOne Plus qPCR
system (Applied Biosystem). For each PCR reaction, 10 µL
iTaqTM SYBR® Green supermix with ROX PCR core reagents
(Bio-Rad), 2 µL of cDNA (50 ng µLG1) and an optimized amount
of primers were mixed with ddH2O to a final reaction volume
of 20 µL per well. All samples were analyzed twice (technical
replication) and the geometric mean of the Ct values was
further used for mRNA expression profiling. The reference
gene GAPDH was used for the normalization of the target
genes. The delta Ct ( Ct) values were calculated as the
difference  between  the  target  genes  and  the  reference
gene ( Ct = Cttarget- Ctreference gene) as described previously by
Silver   et   al.19.   The   final   results   were   reported   as   the
fold  change calculated from delta Ct  values. The differences
in FMO3 gene expression were analyzed with paired t-tests.
The values with p<0.05 were considered to be statistically
significant.

RESULTS

Fatty acid composition profile: The phenotypic profile in
Table 2 shows the descriptive statistics for the fatty acid
composition in Indonesian Cihateup ducks. The fatty acid
profile analyses detected the composition of 18 fatty acids,
including  total  SFA,  PUFA  and  MUFA  in  each  sample. Total
SFA contained seven FAs, namely, lauric acid (C12:0), myristic
acid (C14:0), palmitic acid (C16:0) stearic acid (C18:0),
pentadecanoic acid (C15:0), heptadecanoic acid (C17:0) and
arachidic acid (C20:0), with average levels of 0.07, 0.51, 27.80,

Table 2: Phenotypes of fatty acid composition
Traits Mean (46) SD
Myristic acid (C14:0) 0.52 0.05
Lauric acid (C12:0) 0.09 0.07
Palmitic acid (C16:0) 27.16 2.45
Stearic acid  (C18:0) 5.20 0.76
Arachidic acid  (C20:0) 0.17 0.11
Pentadecanoic acid  (C15:0) 0.05 0.01
Heptadecanoic acid (C17:0) 0.10 0.02
Palmitoleic acid (C16:1) 2.16 0.55
Elaidic  acid  (C18:1n9t) 0.12 0.03
Oleic acid (C18:1n9c) 44.13 2.78
Cis 11 eicosenoic acid  (C20:1) 0.73 0.13
Linoleic acid (C18:2)  18.36 1.60
γ-Linolenic acid (C18:3n6) 0.04 0.01
Arachidonic acid (C20:4) 0.23 0.06
Cis-11,14-eicosedenoic acid (C20:2) 0.12 0.03
SFA 33.28 2.69
PUFA 18.76 1.60
MUFA 47.13 3.03

5.13, 0.05, 0.10 and 0.17%, respectively. Total MUFA (C16:1,
C18:1n9t,  C18:1n9c,  C20:1)  and  PUFA (C18:2, C20:4,
C18:3n6,C20:2) were calculated by adding each of the 4 FAs.
The results also indicated that total SFA was lower than MUFA
but higher than PUFA (Table 2).

Gene FMO3 polymorphisms: A nonsynonymous FMO3 SNP at
g.849A>G was confirmed in exon 6 of FMO3 in the studied
Indonesian Cihateup duck population. Animals of this
population were genotyped at g.849A>G in exon  1, which
was   the   SNP   segregating   within   the   populations.   The
SNP was confirmed by PCR-RFLP. The DNA restriction
fragments obtained for the g.849A>G SNP of the FMO3-AlwNI
polymorphism were 525 bp for the AA genotype, 525, 299 and
226  bp  for  the  AG  genotype  and  299  and  226  bp  for  the
GG genotype (Fig. 1).
The calculated genotype and allele frequencies of the

FMO3 gene in the duck population are shown in Table 3. In
this  study,  two  genotypes  AG  and  GG  were  found  with
SNPs at g.849A>G in our population. The homozygous GG was
more frequent and the heterozygous AG was rare in our
population. The chi-square test revealed that the locus of
FMO3 was in Hardy-Weinberg equilibrium in this Indonesian
Cihateup duck population (Table 3).

Association of FMO3 polymorphisms with fatty acid
composition: Association analysis of the g.849A>G SNP with
fatty  acid  composition  revealed  significant  (p<0.01)
associations with myristic acid (C14:0), stearic acid (C18:0),
palmitoleic acid  (C16:1), oleic acid (C18:1), linoleic acid (C18:2),
palmitoleic acid (C16:1), oleate acid (C18:1) and linoleic acid
(C18:2, p<0.05). Compared to the GG phenotype (p<0.05), the
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Table 3: Genotype, allele frequencies and the chi-square test of FMO3 using RFLP in Cihateup duck
Genotype frequency Allele frequency
------------------------------------------------------------------ -------------------------------------------------------------------------------

Sample Genotype (n) AA AG GG A G He Ho 
Cihateup 100 0.000 0.083 (9) 0.917 (91) 0.042 0.958 0.080 0.083

Table 4: Genotype and association analysis of  FMO3 with fatty acid composition
Traits AG (39) GG (7)
Myristic acid (C14:0) 0.51±0.07 0.52±0.04
Lauric acid (C12:0) 0.21±0.08a 0.07±0.03b

Palmitic acid (C16:0) 25.22±4.50b 27.50±1.61a

Stearic acid  (C18:0) 4.57±0.64a 4.46±0.75b

Arachidic acid  (C20:0) 0.28±0.24a 0.15±0.06b

Pentadecanoic acid  (C15:0) 0.04±0.01b 0.05±0.01a

Heptadecanoic acid (C17:0) 0.10±0.02 0.10±0.02
Palmitoleic acid (C16:1) 3.02±0.36a 2.00±0.41b

Elaidic  acid  (C18:1n9t) 0.11±0.03 0.12±0.03
Oleic acid (C18:1n9c) 46.69±3.32a 43.67±2.45b

Cis 11 eicosenoic acid  (C20:1) 0.71±0.14 0.73±0.13
Linoleic acid (C18:2)  19.59±1.09a 18.14±1.58b

(-Linolenic acid (C18:3n6) 0.06±0.01a 0.04±0.01b

Arachidonic acid (C20:4) 0.17±0.06b 0.24±0.05a

Cis-11,14-eicosedenoic acid (C20:2) 0.12±0.03 0.12±0.03
SFA 30.32±4.21b 33.70±2.02a

PUFA 19.95±1.08a 18.65±1.74b

MUFA 49.62±3.10a 47.20±2.44b

Values with different superscript within rows differ at p<0.05

Fig. 1: PCR-RFLP genotyping result for the FMO3 gene

genotype  AG  exhibited  greater  compositions  of  myristic
acid (C14:0), palmitoleic acid (C16:1), oleate acid (C18:1) and
linoleic  acid  (C18:2,  p<0.05)  but  not  stearic  acid  (C18:0)
(Table 4).

Fig. 2: mRNA expression of FMO3 in liver from high
unsaturated fatty acid (AG genotype) and low
unsaturated fatty acid (GG genotype)

mRNA expression of FMO3 in divergent unsaturated fatty
acid genotypes: Quantitative real-time PCR showed that the
FMO3 mRNA was differentially regulated (p<0.01) between
animals with the AG genotype (high myristic acid (C14:0),
palmitoleic acid (C16), oleic acid  (C18:1),  linoleic  acid 
(C18:2),low stearic acid (C18:0)), the GG genotype (myristic
acid (C14:0), palmitoleic acid (C16), oleic acid (C18:1), linoleic
acid (C18:2) and high stearic acid (C18:0)) in the muscles.
Higher transcript abundance was detected in the muscles of
animals with the AG genotype (p<0.05) compared to  that  in 
the  muscles  of  animals  with  the  GG  genotype (Fig. 2).

DISCUSSION

The composition of 9 FAs, including SFA, UFA, MUFA and
PUFA, was measured in duck muscle sample. The results
showed that the total SFA composition was lower than that of
MUFA  but  greater  than  that  of  PUFA.  The  composition  of
FAs measured in this study is similar to the values measured in
broiler chicken populations as reported by Maharani et  al.20,
in which total SFA was lower than MUFA but higher than
PUFA. These findings confirmed that SFA in bird meat is less
saturated than ruminant meat. The ratios SFA and UFA levels
in membrane fluidity and cell-cell interactions have been
affected in a variety of human diseases, such as cancer21,
diabetes22,  obesity23,  hypertension24  and  neurological
diseases25,26. High levels of MUFAs and PUFAs decrease the
circulating concentration of LDL-cholesterol by increasing
hepatic LDL receptor activity27. In contrast, high  intake  of  SFA

490

 

M                            GG                        AG 

500 bp 

400 bp 

300 bp 

200 bp 

100 bp 



Int. J. Poult. Sci., 16 (12): 486-493, 2017

can result in elevated plasma cholesterol, which leads to
cardiovascular disease. SFAs such as lauric acid (C12:0),
myristic acid (C14:0) and palmitic acid (C16:0) most
deleteriously influence the cardiovascular health28.

This  study  revealed  an  association  of  FMO3  with  fatty
acid composition in Indonesian Cihateup ducks (Table 4).  The
exonic SNP g.849A>G was found to be significantly associated
with  fatty  acid  composition  in  these  ducks,  including  the
UFAs palmitoleic acid (C16:1), oleic acid (C18:1) and linoleic
acid (C18:2) and SFAs (myristic acid (C14:0) and stearic acid
(C18:0). To our knowledge, this is the 1st association study of
an  FMO3  polymorphism  with  fatty  acid  composition.
Previously,   several   studies   reported   an   association   of
FMO3 with fishy-taint in several birds and mammals. A
nonsynonymous mutation in the chicken FMO3 gene (T329S)
had been  verified to be associated with elevated levels of
TMA and fishy taint in the chicken egg yolk8. Furthermore,
Moe et al.10 reported that the nonsense mutation Q319X was
significantly associated with the elevated TMA content in the
quail egg yolk. In cattle, a nonsense mutation (R238X) in the
cattle FMO3 gene was found to underlie fishy off-flavor in cow
milk9. In pigs, the FMO3 gene was located in a QTL region
correlated with off-flavor, which indicated an association
between the FMO3 gene and off-flavor in pigs11. FMO3 is a
vital member of the FMO family and is primarily present in the
adult human liver, where it plays an important role in the
metabolism of xenobiotic-containing TMA14. TMA is the main
compound causing the human metabolic disorder TMAU29,
the fishy off-flavor in dairy milk and the fishy taint in chicken
eggs8,9. The highest unsaturated fatty acid values were
determined in the AG genotype for palmitoleic acid (C16),
oleic acid (C18:1) and linoleic acid (C18:2) but stearic acid
(C18:0) values were low in contrast, the GG genotypes
exhibited significantly lower UFA values (Table 4). The results
indicated that the identified SNP was associated with
increases in palmitoleic acid (C16:1), oleic acid (C18:1), linoleic
acid (C18:2) and SFA but the SNP was associated with a
decrease in stearic acid in heterozygous animals. Palmitoleic
acid  was  considered  to have a positive effect on reducing
bad cholesterols30 and on reducing fat deposition in blood
vessels and blood clot formation31. The ratio of stearic acid to
oleic acid is one of the most important factors influencing the
balance of membrane fluidity32,33. Linoleic acid (C18:2) is
considered to have a positive correlation with the flavor of
meat and is associated with human health34,30.
To further explore the association between the FMO3

gene and  fatty  acid  compounds,  mRNA  expression  levels
were  investigated in the liver tissues collected from AG and
GG  genotype  groups.  Higher  FMO3  mRNA  expression  was

detected in ducks with high unsaturated fatty acid
composition and specifically, there was significant
upregulation of FMO3 in the AG genotype compared to that
in the GG genotype group (Fig. 1). The FMO family of enzymes
converts  lipophilic  compounds  into  more  polar  metabolites
and decreases the activity of these compounds35. We
speculate that the fatty acid composition, especially UFA, was
negatively  correlated  with FMO3 activity. Therefore, it could
be  postulated  that  FMO3  plays  an  important  role  in
producing the fatty acid composition in ducks and that the
associated polymorphism could contribute to increase the
UFA composition, which is positively correlated with human
health. To our knowledge, no mRNA expression of FMO3 has
been reported in previous studies related to fatty acid
composition. Different isoforms of the FMO gene family
member FMO5 are reported to be increased when boar taint
is low36,37. Falls et al.38 reported FMO1 and FMO3 to be
increased and serum testosterone levels to be decreased after
castration. The FMO gene family is reported to play a role in
sex steroid production10,39. Additionally, the FMO gene family
is reported to be involved in the metabolism of androstenone
in the liver10,39. FMO expression was reported to  be  affected
by testosterone and estrogen exposure in mice38. In a study
conducted by Wang et al.14, using RNA-seq in the adipose
tissue of sheep, FMO3 was reported to be down regulated in
tissues with higher fat deposition. Furthermore, down
regulation of FMO3 can inhibit fatty acid oxidation.
Considering that the fat deposition in animals can be
attributed to the balance among dietary absorbed fat,
endogenous lipogenesis and lipolysis, higher fat deposition
may  be caused by diminished fatty acid oxidation or
increased adipogenesis of adipocytes7. The higher expression
of FMO3 in ducks with higher UFA composition suggested
that FMO3 might be involved in regulating fatty acid
metabolism. These results have implications for genomic
selection because the FMO3 gene is associated with fatty acid
composition. However, the sample size used to determine the
association was small, so validation in a larger sample size is
necessary.

CONCLUSION

This study demonstrated that polymorphisms in FMO3 at
g.849A>G might linked to the muscle UFA compositions of
Indonesian Cihateup ducks. The expression levels of FMO3
mRNA  and  proteins  were higher  in  ducks  having  higher
UFA profiles compare to that of lower UFA compositions in
muscle. The association and mRNA expression data have
supported   the   candidacy  of  FMO3  gene  as  an  important
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marker in future molecular breeding techniques to select
ducks with higher PUFA and lower SFA in meat. However,
these findings should be validated in larger and independent
duck populations and additional SNPs should be investigated. 
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