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Abstract: Appropriate statistical analyses are of primary importance for understanding experimental results.
Shim et al. (2014) detailed the influence of different statistical approaches on results of a two factor nutrition
experiment with broiler chickens. However, frequently designs with more than two factors are needed
because of the complexity of modern broiler and egg production. Statistical analyses need to be clearly
communicated so that readers can properly interpret the results of experiments with poultry. Designs with
two or more factors are frequent players in the world of experimental design. The computational burden of
the attendant analysis of variance is somewhat eased by the presence of statistical packages. Contrary to
expectation, it is not clear from texts or the Manual (s) how the package(s) can be used to find components
of the interaction effects, whether the factors are qualitative or quantitative factors. We show how SAS can be
persuaded to calculate these components (A x Linear B, etc., when A is a qualitative and B is a quantitative
factor and Linear A x Linear B, etc., when hoth A and B are quantitative factors). The procedure can be
adapted to fit other packages which have provision for contrast calculations. The results presented here
extend and clarify the analyses of Shim et al. (2014) on the advantages and disadvantages of various

techniques for analyzing results from experiments on poultry with more than two factors.
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INTRODUCTION

Shim et al. (2014) pointed out clear ambiguities in the
way statistical procedures are presented in poultry
science journals. Statements appearing like “Data were
analyzed by using the GLM procedure of SAS (SAS
Institute, 2006)” make it impossible for readers to
understand and especially repeat, the methods that
were applied. Shim et al. (2014) demonstrated the
influence of several different statistical analytical
approaches to a data set from an experiment with broiler
chickens. They showed how different models may lead
to different conclusions from the same experimental
results. They listed possible advantages and
disadvantages that may be applied to a relatively simple
two factor treatment design. In this paper, we extend the
results of Shim et al. (2014) and show how experiments
with two or more factors, some are quantitative and
others are qualitative, may he analyzed as they apply to
experiments with poultry.

The availahility of statistical packages has eased
considerably the computational burden of many
statistical analyses. Those who use them extensively
are grateful. However, those same users are also
painfully aware of the limitations of any particular
package, limits that beguile the glossy "covers" (so-to-
speak) seemingly promising so much more apparently
than can be delivered and limits exposed when trying to

reconcile  inconsistent answers generated by
supposedly clear but in fact oftentimes obscure Manual
instructions. This paper focuses attention on the use of
the SAS package and in particular on an aspect of the
GLM procedure as used in the analysis of experimental
design data. More specifically, we consider a standard
factorial design with two (or possibly more) factors. The
factors of interest are A and B. Suppose factor B is a
quantitative factor. Then, among the usual quantities of
interest, we can also find appropriate statistics relating
to the components of B, such as Linear B, Quadratic B,
etc. The GLM procedure does this and the
documentation is clear on how to carry out this task. The
difficulties come when we try to find components of the
interaction term A x B. If A is a quantitative factor, interest
centers on components Linear A x Linear B, Quadratic A
¥ Linear B, Linear A x Quadratic B, etc. The SAS Manual
provides no evidence that its GLM procedure will
calculate these components. If A is a qualitative factor,
we may wish to consider components A x Linear B, A x
Quuadratic B, etc. Here too we are left to believe these
components cannot be calculated by a SAS procedure,
though there is evidence suggesting that components
Linear B at a (specific) level of A, etc. can be found.
Unfortunately, Manual instructions to do this are very
obliqgue and are from a practical point of view
nonexistent. Not surprisingly there is a wide spread
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belief that SAS cannot calculate these components. This
is unfortunate since the need for these components
arises frequently, especially in agricultural and biclogical
applications and in social science applications and too
often such applied researchers therefore do not take
their analyses these extra steps because they think they
“cannot” and “need not”.

However, in fact, SAS can be persuaded to vyield
calculations on these interaction components. Our
purpose here is to indicate how this can be done. Thus,
we consider the case that both factors are quantitative
and we look at interaction components when one factor
is qualitative and one is quantitative. We also draw
attention to a related issue. First, we will assume there
are only two factors, A and B, with replications. Then,
generalization to more than two factors, with or without
replications, follows readily, as shown. While the vehicle
to develop these results is that for the SAS package, the
principles described herein can be adapted to fit other
software packages which allow the calculation of basic
contrast components.

Our approach will be developed by way of an illustrative
example using the data of Table 1. These data were
extracted from the results of an experiment reported in
Chamruspollert et al. (2002).

MATERIALS AND METHODS

Both factors quantitative: The vehicle for illustrating the
methodology is a factorial design investigating the
influence of two quantitative factors A (Arg) and B (Met)
on the response variable (Average BW gain in 14 d) of
chickens.

Any analysis starts by entering the data appropriately,
typically by using an INFILE statement or a DATA LINE
(or CARDS) statement followed by the actual data.
Figure 1{) shows one version. We note that in this
example factor A has four equally spaced levels (1.52,
2.02, 2.52, 3.02%), factor B has three equally spaced
levels (0.35, 0.45, 0.55%) and there are three
replications. This Fig. 1(l) also shows SAS statements
asking the procedure GLM to execute the standard
analysis which produces the usual statistics associated
with A, B and the interaction A x B. Also, it is reasonably
straight-forward to calculate a linear component of A
using SAS (SAS Institute, 2006). Thus, we include a
CONTRAST statement contrast ‘Linear A’ A -3 -1 1 3,
after the MODEL statement. Likewise, the statement
contrast ‘Linear B B -1 0 |, will calculate the linear
component of B. These determinations are easily made
by following appropriate guidelines such as those in the
SAS Manual. The numbers (-3, -1, 1, 3) used in the
Linear A contrast are those weights needed to construct
a linear function across the levels of A. We recall that, in
general, a contrast across “treatments” Ti,...., Tk is
defined as, for equal replications per treatment:
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(1

In this context, the different levels of A constitute the

treatments. Let us represent the weights as the vector:
W= (o, o) (2)

Thus, the vector of weights associated with the Linear A

and Linear B contrasts in our example are written,
respectively, as:

Ai=(3,-1,1,3) and Bi= (-1,0, 1)

Suppose now we wish to calculate the Linear A x Linear
B component of the interaction A x B. This is achieved by
inserting, with the CLASS statement “class A B”, the
CONTRAST statement:

contrast "Linear Ax Linear BPA*B30-310-1-101-303
(3)

between the MODEL and RUN statements. Similarly, to
calculate the Linear A x Quadratic B, Quadratic A x Linear
B and Quadratic A x Quadratic B components, we use
the statements:

contrast ‘Linear A x QuadraticB  A*B-36-3-12-11-2
13-63;

contrast ‘Quadratic Ax LinearB A*B-10110-110-1
-101;

contrast ‘Quadratic A x Quadratc B A*B1-21-12-1-1
2-11-21;

respectively; likewise, for other components of the Ax B
interaction.
These interaction component contrasts for Linear A x
Linear B are but examples of the basic contrast
definition in equation (1), where now the treatments
correspond to the twelve (= 4 x 3) linear-linear levels of
A x B. Formally, the weights are given by the vector:
C = vec(A'#B)’ (4)
where, if the column vector A" (of dimension a) has
elements ai and the row vector B (of dimensicon b) has
elements bj, then the matrix D = (A'#B) is of dimension
ab and has elements dij = aibj and where vec(D’) is the
vector obtained by listing out the row elements of D" in
order.
For example, Table 2 gives the matrix elements found
from evaluating (-3, -1, 1, 3)'#(-1, 0, 1). Hence, the
weights for the Linear A x Linear B contrast and in the
order they are to be used become readily apparent.
Table 2 also provides the weights and their ordering for
the Linear A x Quadratic B, Quadratic A x Linear B and
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Table 1: llustrative data

Bi B2 B3
Al 327.63 308.13 32063 386.13 37250 372.00 345.00 380.00 381.00
A 278.75 264.38 211.36 363.63 350.88 34575 331.03 340.38 352.00
A3 254.25 191.50 206.00 314.75 355.25 33813 31363 355.75 418.75
Ad 181.50 144.50 157.50 176.63 24050 290.50 369.00 336.50 385.86
Table 2: Both A and B quantitative factors : general formula of equation (4), but now the weights for
—- @ Linear B e (b) Quadratic B - A(*) equate to the vector of O's except that a weight 1
Linear A -1 0 1 1 -2 1 . . . . th
3 3 0 3 3 6 3 appears in the ith place when dealing with the i level of
R 1 0 1 e 2 1 A. See Table 3 for the (A#B) matrix for use in calculating
1 -1 ] 1 1 -2 1 the Linear B at the second level of component A, for
3 -3 0 3 3 -6 3 example.
A#B A'#Bg . . )
- - Therefore, to determine Linear B at Az, we include the
------- (c) Linear B ------— --—-- {d) Quadratic B --—-- )
Quadratic A -1 0 1 1 -2 1 statements:
1 -1 0 1 1 -2 1
-1 1 0 -1 -1 2 -1 contrast ‘LinearBatA” B-101A*B0O00-101;
-1 1 0 -1 -1 2 1
! 3 ° ! ! 2 ! imilarly for levels As and As. We al d to calculat
A B At similarly for levels As and As. We also need to calculate

Table 3: A qualitative and B quantitative factors weight matrix. Linear B

at Az
Linear B
-1 0 1
Al 0 0 0 0
Az 1 -1 0 1
A3 0 4] 0 0
Ad 0 0 0 0

Quadratic A x Quadratic B contrast statements. The
complete set of PROC GLM statements for these linear
and quadratic contrasts is displayed in Fig. 1 {ii) and its
output is given in Fig. 1 (iii).

Qualitative and quantitative factors: Let us now
consider the case when one factor (A) is qualitative and
one factor (B) is quantitative. First, the contrasts over B
are evaluated at each level of A, separately. Thence, the
final interaction contrast is subsequently calculated. Let
us dencte the levels of A by Ai,..., Aa

Therefore, to calculate the A x Linear B contrast, we first
calculate the contrasts Linear B at the level A, i=1,..., 4.
For example, the Linear B at A1 contrast is evaluated by
inserting the statement:

contrast ‘Linear Bat A" B-101A*B-101000000000; (9)

between the MODEL and RUN statements. Since
weights not specified at the end of a weight vector are
automatically set at zero, we can write this CONTRAST
statement more simply as:

contrast ‘LinearBatAyB-101A*B-101;

In contrast to the case when both factors are quantitative
(where only weights for A*B were required, see, e.g., (3),
note there are two parts to this statement, one with
weights appropriate to the Linear B component, viz., B =
(-1, 0, 1) and one appropriate to the AxB component. The
weights associated with A * B are as given by the

separately the Linear B component of the main effect of
B. The complete set of SAS statements for the PROC
GLM part of the program is displayed in Fig. 2(i) and the
output is shown in Fig. 2(ii). While for the present
purposes our ultimate goal is to calculate the overall
A*Linear B contrast, we note in passing that SAS outputs
the F- and P-values for the contrast Linear B at a specific
level of A; so, e.g., we can test whether or not there is a
significant linear trend across the B levels at A
considered alone.

The completed sum of squares (SS5) value is then
readily found from:

4
(A x Linear B)SS = 3 (Linear B at A)SS - (Linear B)SS  (6)
i=1

“by hand” if need be, but see below. Thence, for the data

of our example:
(A ¥ Linear B)SS = (552.25+...+8.00)-18.0625 = 884.1875

Hence, the F- and P- statistics, etc., can be evaluated.
Suppose further we wish to instruct SAS to carry out the
calculations of Eq. (8). This is achieved by changing the
PROC GLM, statement to the statement:

proc glm data = <datafilename> outstat = <filename>

where, in our case the datafile name is “one” and the
outstat file name is "junk”, and by adding the set of
statements as provided in Fig. 3. Before elaborating on
this, it may be instructive to look more closely at what
SAS is doing internally.

The OUTSTAT option allows us to keep (for subsequent
use) internal SAS (SAS Institute, 2006) output not
automatically printed in the standard output. To see the
contents of this OUTSTAT data set, we can print them in
the usual way. Thus, Fig. 4(i) gives the SAS statements
needed to affect this, with the printed output shown in
Fig. 4(ii). Critically, the structure of this OUTSTAT data
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set instructs us on how to write our program for the
calculation of the sum of squares of the A x Linear B
contrast of (6). More specifically, we want to add the SS
terms for "observations" OBS = 6,..., 9 and to subtract
that for OBS = 5.

Most importantly at this stage is the realization that there
is a hidden DO loop, with the consequence that the
intuitive step of doing a natural DO loop on the OBS
variable does not work. This is circumvented by the
IF/ELSE statements on the automatic variable N (SAS
Language Manual, SAS Institute, 2006). Thus, to
calculate the (A x Linear B) SS, we use the SAS (SAS
Institute, 2006) statements:

retain sum 0;

if N_<5then SS=0;

else if _N_=5then S5 = - 5S5;
sum=sum+ SS;

as in Fig. 3. Running totals are still automatically
retained;, the required answer is the last value
calculated, in this example, (A x Linear B)SS = 884.1875.
Suppression of all but this last summation can he
incorporated into the program [by asking for output only
at the end, e.g., “if last then output;”].

In like manner, with appropriate use of the automatic
variable _N_, the Error MS and hence the F- and P-
statistics can be calculated. These have been done in
the SAS statements of Fig. 3. The corresponding output
is shown in Fig. 5.

An alternative compact code for obtaining the A x Linear
B contrast statistics (suggested by a reviewer) as well
as those for the A x Quadratic B contrast, is provided in
Appendix A and the corresponding output is in Appendix
B.

Fig. 1(iii): SAS output

Not to confuse the Issue ... But: For qualitative and
quantitative factors, we developed program statements
that would instruct the SAS package to calculate the A x
Linear B, etc, contrast statistics. In particular,
appropriate weights to insert into a CONTRAST
statement, such as those in Fig. 2(i), were determined.
It is critical to note that the order in which the
factors Aand B are inserted into the CLASS statement

Fig. 1(i): Basic SAS Program
I* Quantitative x Quantitative Model. Interaction Components */
options I1s=72 nodate pageno=1 formdlim=""; /* List desired options */
title ‘Quantitative/Quantitative Example’;
data onhe;
doA=1tod;
doB=1103;
dorep=1to3;
input y@@;

output;

end;
end;

end;

data lines; /* Or, ‘cards,” */

327.63 308.13 320.63 386.13 37250 372.00 345.00 389.00 381.00
278.75 264.38 211.36 363.63 359.88 34575 331.93 349.38 352.00
254.25 191.50 206.00 314.75 355.25 338.13 313.63 355.75 418.75
181.50 144.50 157.50 176.63 24050 26050 369.00 336.50 385.86

proc glm;

class AB;

model y = A|B /ss3;
run;

Fig. 1(ii): Contrast Statements

f*Contrast statements*/

proc gim;

class AB;

model y = A|B /ss3;

contrast ‘Linear A x Linear BA*B30-310-1-101-303;
contrast ‘Linear A x Quadratic B A*B-36-3-12-11-213-63;
contrast ‘Quadratic A x Linear B A*B-10110-110-1-101;
contrast ‘Quadratic A x Quadratic B A*B1-21-12-1-12-11-21;
run;

Qualitative x Quantitative factors
The GLM procedure

Dependent variable: Y

Source DF Sum of squares
Model 11 173003.6059
Error 24 21419.8748
Corrected total 35 194423 .48.07
R-Square Coeff. Var.
0.889829 9.698180
Source DF Type Il 38
A 3 48038.59334
B 2 97474.62894
A'B 6 27490.38357
Contrast DF Contrast 55
Lin Ax Lin B 1 18882.98497
Lin Ax Quad B 1 3501.57656
Lin Ax Lin B 1 109.52554
Lin Ax Quad B 1 4947 30623

Mean squares F value Pr=F

15727.6005 17.62 <0.0001

892.4948

Root MSE Y mean

29.87465 3.8.0439

Mean square F value Pr=F

16012.86445 17.94 <0.0001

48737.31447 54.61 <0.0001

4581.73060 5.13 0.0016

Mean square F value Pr=F

18882.98497 21.16 0.0001
3501.57656 3.92 0.0592

109.52554 012 0.7292

4947 30623 554 0.0271
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is also important. Reversing the order from (A B) to (B A)
necessitates changing the order of the coefficients in the
CONTRAST statements.

To illustrate, let us suppose that now factor A is
quantitative and factor B is qualitative and suppose we
wish to calculate the (B x Linear A)SS. A set of CLASS
and CONTRAST statements to be used is given in Fig.
6. Thus, we use:

class B A;
contrast ‘Linear AatB’ A-3-113A*B-3-113;
contrast ‘Linear AatB’ A-3-113A*B0000-3-113;

and so on. Or, we canh use:

class A B;
contrast ‘Linear A at BT A-3113A*B-300100100300; (7)
contrast ‘Linear AatB2’ A-3-113 A*BO0-300-10010030;

and so on. However, the following will not work:

class A B;
contrast ‘Linear AatB’ A-3-113A*B-3-113;

since the order of (A B) in the class statement is
incorrect for this format of the CONTRAST weights. To
see this, we refer to the matrix of weights appropriate to
the Linear B at Ai contrast in Table 4, when the “class A
B, statement is used. It is immediately clear that the row
vector C of weights (from equation (4)) produces the
CONTRAST statement (7) above.

How a reversal of the factors in the CLASS statement
affects the program when both factors are quantitative, if
at all, is left as an exercise for the reader.

Three or more factors: The same principles used in the
previous sections apply when there are three or more

Fig. 2(ii): SAS out put

factors, with each factor either qualitative or quantitative.
We illustrate this briefly for the case where all factors are
quantitative and where one factor is qualitative and two
factors are quantitative factors. Suppose all factors have
three levels.

When all three factors are quantitative, the methods of
both factors quantitative apply. Suppose we want to find
the contrast Linear A x Linear B x Linear C. Thus, we
need to calculate A'#B#C.. The weights for Linear A x
Linear B are first calculated, as shown in both factors
quantitative, i.e., A #B =1, 0,-1,0,0, 0,-1, Q, 1). These
in turn are multiplied by the linear C weights Ci = (-1,0,1)
again as shown in Eq. (4); see Table 5. Therefore, the
CLASS and CONTRAST statements are:

class AB C;
contrast ‘Linear A x Linear B x Linear C' A*B*C
-10100010-100000000010-1000-101;

Consider now the case where factor A is qualitative and
each of B and C is a quantitative factor. Suppose in
particular we want to calculate the A x Linear B x Linear
C contrast. Then, the appropriate linear weights are

Fig. 2(i): Contrast Statements

I* Qualitative x Quantitative Model. Interaction Components */
I* Ais QUALitative, B is QUANTitative's

[Data input, etc., statements]

proc gim;

class AB;

model y = A|B /ss3;

contrast ‘Linear B'B-101;

contrast ‘LinearBat AI’B-101A*B-101;

contrast ‘LinearBat A2’ B-101A*B000-101;

contrast ‘LinearBat AY B-101A*B000000-101;
contrast ‘LinearBatA4' B-101A*B000000000-101;
run;

Qualitative x Quantitative factors
The GLM procedure

Dependent variable: Y

Source DF Sum of squares Mean squares F value Pr=F
Model 11 173003.6059 15727.6005 17.62 <0.0001
Errot 24 21419.8748 892.4948
Corrected total 35 194423 .48.07

R-Square Coeff Var Root MSE Y mean

0.889829 9.698180 29.87465 3.8.0439
Source DF Type lll 3S Mean square F value Pr=F
A 3 48038.59334 16012.86445 17.94 <0.0001
B 2 97474.62894 48737.31447 54 .61 <0.0001
A'B 6 27490.38357 4581.73060 5.13 0.0016
Contrast DF Contrast SS Mean square F value Pr=F
Linear B 1 9147274954 91472.74954 10249 <0.0001
Linear B @ A1 1 4192.85535 4192.85535 4.70 0.0403
Linear B @ A2 1 12956.76540 12956.76540 14.52 0.0009
Linear B @ A3 1 31737.91740 31737.91740 35.56 <0.0001
Linear B @ A4 1 61582.29660 61582.29660 69.00 <0.0001
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Fig. 3: Computing the A x Linear B Contrast Statistics

/* Qualitative X Quantitative Model. Interaction Components */
1* Ais QUALitative, B is QUANTItative*/

[Data input, etc., statements, see Table 2(1)]

proc gim data=one outstat=junk;

[Other statements for A x Linear B contrast components, see Table 5(1)]
/* To compute (A x Linear B)MS */

data three;

set junk end=last;

title ‘A x Linear B Contrast’;

retain div dfE dfA sum O;

if N = 1 then div = SS/DF;

else div = div +0;

if N = 1 then dfE = DF;

else dfE =dfE + 0O;

if N = 2 then dfA = DF;

else dfA =dfA + 0;

if N < 5then 85 =0;

else if N = 5 then 55 =-5S;

sum = sum + SS;

/* Toretain the contrast needed and to find the F- and P - statistics */

if last then do;
output;
MS = sum/dfA;
F = MS/div;
p = 1- probf(F,dfA,dfE) ;
file print;
put’ (A x Linear B)SS =’ sum 10.4;
put’ (A x Linear B)MS ="' MS 10.4;
put’ F-value =’ F 8.4;
put * P-value =’ p 6.5;
end;
run;

I* Calculates Error MS */

I* Keeps Error DF as dfE */

I* Keeps A DF as dfA */

/" Calculates (A x Linear B)SS */

I Or, 'if N = 9 then do," */
/* Calculates (A x Linear BYMS */
/" Calculates (A x Linear B) F-value */

f* Calculates (A x Linear B) P-value */

I"Keep 4 decimal places *f

Bi=Ci= (1,0, 1). Hence, first, from (4), the weights for
Linear B x Linear C become B'#Ci = (1, 0,-1, 0, 0, 0,1,
0, 1) in the analogous manner to that described in both
factors quantitative and Table 2(i). Since A is a qualitative
factor, then these weights are applied at each level of A
analogously to that described earlier for one each
qualitative and quantitative factors.

The CLASS and CONTRAST statements become:

class ABC;

contrast ‘Linear Bx LinearC' B*C10-1000-101;
contrast ‘Linear B x Linear C@AB*C10-1000-101
A*‘B*C10-1000-101;

contrast ‘Linear B x Linear C@A2 B*C10-1000-101
A*‘B*C00000000010-1000-101;

contrast ‘Linear BxLinearC @ Ay B*C10-1000-101
A*B*CQ0000000000000000010-1000-101;

Then, the different interaction component contrasts
are used to find the overall (A x Linear B x Linear C)SS
and hence the relevant F- and P- values as shown
for the qualitative and quantitative factors. We leave
as an exercise how the alternative code of Appendix A
might be written for the case that all factors have three
levels.

As a final comment, we remind ourselves that the
weights in the various contrasts herein (e.g., Equation
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(1) are those for equal replications per treatment.
When there are unequal replications, Equation (1)
becomes:

Table 4: Factor a quantitative and factor b qualitative weight matrix.

Linear A at B1
B1 Bz Ba
Linear A 1 0 0
-3 -3 0 0
-1 -1 0 0
1 1 4] 4]
3 3 0 0
A#BI

Table 5: Factors A, B, C quantitative weight matrix. Linear A x Linear B

x Linear C
--- Linear C - P N 11 AR L - R —
1 0 -1 4] 4] 0 -1 0 1
Ci -1 -1 0 1 0 0 0 1 0
C2 0 0 0 0 0 0 0 0 0 0
C3 1 1 0 -1 0 0 0 -1 0 1
A#BHC

Fig. 4(i): OUTSTAT data program

I Qualitative * Quantitative Model. Interaction Components */
I* Ais QUALitative, B is QUANTitative's

[Data input and PROC GLM statements]

I* To print outstat data */

proc print data=junk,

title 'Outstat data from PROC GLM',

run,
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Fig. 4(ii) (continued): SAS QUTSTAT Qutput

Outstat data from PROC GLM - [ N_NAME SOURCE TYPE]

OBS NAME SOURCE TYPE

1 Y ERROR ERROR

2 Y A 853

3 Y B 583

4 Y AxB 583

5 Y Linear B CONTRAST
6 Y Linear B at A1 CONTRAST
7 Y Linear B at A2 CONTRAST
8 Y Linear B at A3 CONTRAST
9 Y Linear B at A4 CONTRAST

DF S8 F PROB
24 21419.87 . .

3 48038.59 17.942 0.000003
2 97474 .63 54.608 0.000000
6 27490.38 5.134 0.001612
1 91472.75 102.491 0.000000
1 4192.86 4.698 0.040343
1 12956.77 14.517 0.000850
1 31737.92 35.561 0.000004
1 61582.30 69.000 0.000000

Fig. 5: SAS Qutput for A = Linear B Contrast Statistics
A Linear B Contrast

(Ax Linear B)SS = 18997.085
(Ax Linear B)MS = 6332.362
F =7.0051

P =0.00141

Fig. 6: Reversing the CLASS Statements

/* Qualitative x Quantitative Model. Interaction Components */

I* Alis QUALitative and B is QUANTI tative *f

[Data input, etc. statements]

/* To compute the B x Linear B */

proc glm data=one outstat=junkl;

class AB;

model y = A|B /ss3;

contrast ‘Linear A’ A-3-113;

contrast ‘Linear Aat Bl A-3-113A*B-300-100100300;
contrast ‘Linear Aat B2’ A-3-113A*B0-300-10010030;
contrast ‘Linear Aat B3’ A-3-113A*B00-300-1001003;
run;

/*OR, Alternatively: */

proc gim data=one outstat=junkl;

class B A;

model y = A|B /ss3;

contrast ‘Linear A’ A-3-113;

contrast ‘Linear Aat Bl A-3-113A*B-3-113;

contrast ‘Linear Aat B2’ A-3-113A*B0000-3-113;
contrast ‘Linear A at B3 A-3-113A*B00000000-3-113;
run;

k k
z=> roT with 3 rm =0
i=1 i=1

where, ri is the number of replications for treatment T..
For example, if k = 3 with rn = 3, r2= 3, r3 = 2, then the wi
weights of Eq. (2), for B, become W = (-1/3, 0, ¥4).
Likewise, the other contrast statements can be suitably
adjusted.

RESULTS AND DISCUSSION

The interpretation of the various interaction components
can be facilitated by reference to Fig. 7 which shows a
surface plot of the means at each combination of the
levels of A (Arg) and B (Met). For example, the analysis of
the contrast interaction A x Linear B revealed this to be a
significant component (P = 0.001, Fig. 5. This tells us
that there is a significant linear trend in B {(Met) across
the different levels of A (Arg) and that this trend is
different for different levels of A (Arg). These differences
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for different A values are clearly evident in Fig. 7. Note
that depending on the data, it can be that there is no
significant linear trend in B, but there are significant A x
Linear B components (Shim et af., 2014). Likewise, were
we to consider the factor A as a quantitative factor and B
as a qualitative factor (see discussion on “Not to
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APPENDIX A

Altemnative code for A x Linear B Contrasts:
class A B; model Y=A|B/ss3;
contrast 'AfLinear B' A*B-10110-1,
A'B-10100010-1,
A'B-10100000010-1;
contrast '(A1,A2)"Linear B'A'B-10110-1;
contrast '(A1,A3)"Linear B'A'B-10100010-1;
contrast '(A1,A4)"Linear B'A'B-10100000010-1;
contrast '(A2,A3)"Linear B'A'B 000-10110-1;
contrast '(A2,A4)"Linear B'A'B 000-10100010-1;
contrast '(A3,A4)"Linear B'A'B 000000-10110-1;

Altemative code for A x Quadratic B Contrasts:
class A B; model Y=A|B/ss3;
contrast 'A*Quadratic B'A*B1-21-12-1,
AB1-21000-12-1,
A‘B1-21000000-12-1;
contrast '(A1,A2)"Quadratic B'A'B1-21-12-1;
contrast '(A1,A3)"Quadratic B'A'B1-21000-12-1;
contrast '(A1,A4)*Quadratic B'A'B1-21000000-1 2-1;
contrast '(A2,A3)"Quadratic B A'B0001-21-12-1;
contrast '(A2,A4)*Quadratic B' A'B0001-21000-1 2-1;
contrast '(A3,A4)"Quadratic B A°‘B000000121-12-1;

Altemative code for A x Linear B x Linear C Contrasts:
class A B C; model Y = A|B|C/ss3;
contrast 'A*Linear B*Linear C' A'B*C10-1000-101-10100010-1,
A'B'C10-1000-101000000000-10100010-1;

Appendix B
SAS Output : A x Linear B and A x Quadratic B Contrasts

Qualitative x Quantitative Example
The GLM Procedure
Dependent variable: Y

Source DF Sum of squares Mean squares
Model 11 173003.6059 15727.6005
Errot 24 21419.8748 802.4048
Corrected total 35 194423 .48.07

R-Square Coeff Var Root MSE

0.889829 9.698180 29.87465
Source DF Type Il S5 Mean square
A 3 48038.59334 16012.86445
B 2 97474.62894 48737.31447
A'B 6 27490.38357 4581.73060
Contrast DF Contrast SS Mean square
Linear B 1 91472.74954 9147274954
Linear B @ A1 1 4192.85535 4192 85535
Linear B @ A2 1 12956.76540 12956.76540
Linear B @ A3 1 31737.91740 31737.91740
Linear B @ A4 1 61582.29660 51582.29660

F value
17.62

Y mean
3.8.0439

F value

17.94
54.61
5.13

F value

10249
4.70
14.52
35.56
69.00

(A'Linear B Contrast)SS = 18997.0852 (A'Linear B Contrast)MS = 6332.3617 F =7.0051246503  p-value = 0.0014129691

A x Quadratic B Contrasts

Contrast DF Contrast SS Mean square
Linear B 1 6001.879401 6001.879401
Linear B @ Al 1 2002.812050 2002.812050
Linear B @ A2 1 6833.584356 6833.584356
Linear B @ A3 1 4243.661356 4243.661356
Linear B @ A4 1 1415.120000 1415.120000

F value

6.72
2.24
7.66
4.75
1.59

(A'Linear B Contrast)SS = 8493.2984 (A'Linear B Contrast)M S = 2831.0995 F = 3.1721187688  p-value = 0.0425295631

Pr=F
<0.0001

Pr=F

<0.0001
<0.0001
0.0016

Pr=F

<0.0001
0.0403
0.0009
=0.0001
<0.0001

Pr>F

0.0159
0.1472
0.0107
0.0393
0.2201
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Confuse the Issue ... But’), then the dotted lines
corresponding to the three levels of B suggest that there
is a different trend line across the levels of A. Indeed, in
this case, the B x Linear A component has a significant
value (P<0.001) and also there is a significantly different
quadratic trend across A for the differing levels of B (P =
0.043). That is, the linear trend of Arg across the levels
of Met is significant and the quadratic trend across Arg
for the differing levels of Met is significant at P<0.05 and
different for differing levels of Met.

When there are one qualitative and two quantitative
variables, the surfaces will be as in the example of Fig.
8. The data for this design were extracted from
Chamruspollert et a/ (2004) and consists of two levels
(25, 35°C) of a qualitative factor A (Temperature) and
three levels (1.52, 2.52, 3.52% and 0.35, 0.55, 0.75%) for
each of quantitative factors B (Arg) and C {Met). Note that
although A is actually a quantitative factor, when there
are only two levels, it is better handled as a qualitative
factor (as herein), unless there is prior evidence to
support only a linear component across the two levels of
A. For the purposes of this illustration, it is assumed the
design here is a standard factorial design. For these
data, the visual suggestion that the Linear B x Linear C
interaction differs for the two levels of A is corroborated
by the statistical analysis for which P<0.001. In these
kinds of designs, the surfaces correspond to the
different level of A (A, i = 1 ..., r). There are linear
surfaces across the levels of Arg and Met combinations,
but this surface is different for different values of
temperature. In this case, if there is a significant
difference (P<0.05) in the A x Linear B x Linear C
interaction component, then these surfaces will assume
different ‘shapes’.

As illustrated by Shim ef af (2014), there are multiple
ways of using SAS and other statistical software
packages to analyze experimental data. The approaches
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illustrated here are capable of extractihg more
information and lead to more insightful interpretations,
than are usually presented by researchers. Complex
experiments with multiple input factors are becoming
increasingly important as poultry producers seek to
balance multiple factors to maximize performance and
profits while trying to minimize environmental impacts.
Going the extra steps illustrated here should aid
researchers and producers in properly interpreting trials
where multiple factors influence productivity.

Finally, this paper has illustrated one way showing how
the SAS (SAS Institute, 2006) package can be adapted to
obtain these interaction components; other ways (such
as use of the difficult macro and/or proc iml methods)
can be developed, using the same principles.
Adaptation to other packages including later versions of
SAS can also be based on these principles.
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