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Abstract. Statistical analyses are important methods for interpreting results of agricultural experiments for
scientific writing, which should clearly communicate the particulars of the research being described in a way
that it can be precisely repeated. Probabilities (p-values) are often described in articles in journals to
compare treatment means to each other and to compare regression coefficients to zero. Most published data
are subjected to ANOVA (analysis of variance) or regression models using the GLM (general linear models)
procedure of the SAS program (SAS Institute, 2008). The object is to determine the significance levels that
means are different. Different statistical models and programming statements may lead to quite different
conclusions. lllustrative data from an experiment with two independent variables (3 and X2 and one
dependent variable (Y) were analyzed. There were 8 levels of Xi and 2 levels of X:. Several ANOVA and
regression models are reported here with or without “class” statements in SAS. The ANOVA model requires
a Class statement be included for each independent variable to signify classification variables. With the
Class statement, SAS computes the Sums of Squares (SS) with n-1 degrees of freedom where n is the
number of levels of each independent variable. However, without the Class statement, SAS computes the
SS with only 1 degree of freedom, as in a regression model. By using either a one-way ANOVA with Duncan’s
New Multiple Range Test or a two-way ANOVA, no differences between treatments were detected. When
using a linear regression model, X2 and the Xi x Xz interaction term had significant p-values (0.025 and
0.014, respectively). When using a second order polynomial regression model, only 3 had a significant p-
value (0.036). When an ANOVA with components including linear and quadratic terms was computed, the
interaction term between Xz and (linear X1) had a significant p-value (0.023). The choice of an appropriate
statistical model is important because conclusions from the subsequent analyses depend on the particular

model used.
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INTRODUCTION

A primary object of any scientific writing should be to
communicate clearly the particulars of the research
being described in a way that it can be precisely
repeated. Statistical analyses are often described in
articles in poultry science journals with statements like
“Differences in treatments (variables) were determined
by ANOVA (analysis of variance) using the GLM (general
linear models) procedures’, “Data were analyzed by
using the GLM procedure of SAS (SAS Institute, 2006)”
and “Data were subjected to ANOVA using the GLM
procedure of SAS (SAS Institute, 2006)”. These
statements are from the first few papers of a recent
issue of Poultry Science. Such statements are quite
ambiguous since there are several ways to program the
SAS GLM procedure. Critically, the different analyses
may lead to quite different results and therefore different
conclusions.

For instance, there are two possible ways to program
the SAS GLM procedure when there are several levels of
the independent variables (the treatments). First, one
way is as an ANOVA Model in which the SAS GLM
procedure requires a “class’ statement identifying each
independent variable which is being used in the
analysis. The SAS program computes relevant Sums of
Squares (SS) with n-1 degrees of freedom (where n =
the number of levels of each independent variable).
Second, a REGRESSION Model may also be used with
no Class statement. The SAS GLM procedure will only
compute regression coefficients if the “/SOLUTION”
option is included with the MODEL statement. The SAS
GLM procedure computes the SS with 1 degree of
freedom for each independent wvariable and
automatically calculates the regression coefficients.
Degrees of freedom are important because among
other roles, they are a measure of the sensitivity of the
attendant F-tests and their associated p-values.
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Although poultry science journals have well-defined
instructions on how to describe the statistical models
adequately and how they are analyzed, it is clear these
instructions are not always being followed. Therefore,
our aim herein is to consider just five different analyses
(there are many other possible analyses and even each
of these illustrative five can themselves be modified in
various ways to produce yet more possible analyses) to
illustrate the consequences of inadequate
documentation of the underlying statistical procedures
implemented. The results of a recent broiler chicken
experiment were analyzed by several methods that could
all be included in a statement like: “Data were analyzed
by using the GLM procedure of SAS (SAS Institute,
2008)". However, different statistical models can be
analyzed by the GLM procedure of SAS (Fig. 1). Using
different programming statements led to different results
and interpretations. The present comparative analysis
was done to: (1) Show how different SAS GLM
programming statements lead to different interpretations
of the same data; (2) Explain how the various models
should be interpreted; (3) Present the most appropriate
model for analyzing the illustrating data and {4) Make
suggestions on minimum terminology that should bhe
included when describing how experiments were
analyzed independent of the statistical software package
that is being used.

We apply five models all of which could fit the description
of “Data were analyzed using GLM procedure of SAS
(SAS Institute, 2006)” to our dataset. The first two are
pure regression models and the last three are analysis
of variance models; all use the “proc glm” procedure.
Any of these models could have been used in many
papers, but the details are often minimized to the extent
that which model was actually used is unclear. The five
models herein increase in complexity and ability to
provide interpretable results. The last one is the most
appropriate for the particular experiment that produced
these data. Generic criticisms of simple models were
made more than 25 years ago in plant bioclogy (Chew,
1976; Little, 1978; Nelson and Rawlings, 1883; Swallow,
1984). Criticisms are equally applicable to Poultry
Science, but have largely gone unheeded. The present
analysis includes criticisms (advantages and
disadvantages) and provides an example of how to
appropriately analyze and interpret data from a typical
poultry science research trial.

The general principle discussed and described in this
paper applies to many packages. However, the vehicle
used here to illustrate these principles is the SAS
package.

MATERIALS AND METHODS

Suppose data were generated in a chick growth trial with
two independent variables, X: (vitamin D) and >
(phytase) and one dependent variable, Y (tibial

Table 1: llustrative data set

OBS Treatment Xi Xz Y
1 1 1 0 10.0
2 2 1 500 114
3 3 3 4] 114
4 4 3 500 15.4
5 5 5 4] 10.0
] 6 5 500 1.1
7 7 7 4] 0.0
8 8 7 500 0.0
9 9 9 0 0.0
10 10 <] 500 114
11 11 ih 0 18.2
12 12 ih 500 0.0
13 1 1 0 10.0
14 2 1 500 10.0
15 3 3 0 0.0
16 4 3 500 250
17 5 5 4] 30.0
18 6 5 500 200
19 7 7 4] 222
20 8 7 500 10.0
21 9 9 0 14.3
22 10 <] 500 10.0
23 11 ih 0 222
24 12 ih 500 0.0
25 1 1 0 9.1
26 2 1 500 30.0
27 3 3 4] 30.0
28 4 3 500 10.0
29 5 5 4] 10.0
30 6 5 500 0.0
31 7 7 4] 114
32 8 7 500 1.1
33 9 9 0 0.0
34 10 <] 500 0.0
35 11 ih 0 0.0
36 12 ih 500 114
37 1 1 0 0.0
38 2 1 500 40.0
39 3 3 4] 0.0
40 4 3 500 10.0
41 5 5 4] 0.0
42 6 5 500 114
43 7 7 0 10.0
44 8 7 500 114
45 9 9 0 333
46 10 <] 500 7.033
47 11 ih 0 222
48 12 1 500 20.0

dyschondroplasia percent incidence). There were 6
levels of Xi (1, 3, 5, 7, 9, 11) and two levels of X (absent,
present, set as 0, 500, respectively), Table 1 for an
illustrative dataset. There were 4 replicate observations
per treatment combination. A summary of our five
possible models is provided in Appendix A.

The SAS statements were used to analyze the data in
several ways. The SAS statements used for inputting
data are:

data a (=data name); input X1 X2 Y; data lines; data
where, variables with subscripts are expressed in the

SAS statements as X1 = X, e.g., Notice that if the X
variable is a non-numeric variable, it can be coded as a
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Fig. 1: Several models that could all be performed “using the GLM procedure of SAS". 1st order linear regression
(Model 1), 2nd order polynomial regression (Model 2), ANOVA (Model 3-6), Multiple range test (Model 3-5),
ANOVA with linear trend (Model 5) and ANOVA with quadratic trend (Model 6)

numeric value (0, 1 for absent, present). Or, it can bhe
coded as a nhon-numeric value (e.g., -, + for absent,
present); in this case the “X2” in the data input line is
replaced by “X2 $. The “data lines,” term can
alternatively be entered as “cards;” and “data” refers to
the list of data values.

Model 1: The first possible model used herein was a
linear regression model. It is typically used to see if a
linear relationship exists between the (X1 and Xy
variables and Y. The SAS statements are therefore:

proc GLM; model Y = X1 X2 X1*X2/ss3; run
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That is, each term in the model statement except the
observational error term e (see Appendix A) appears in
the SAS model statement line. If the term X1*X2 is
omitted, then the model excludes the possibility of the
existence of an interaction between Xi and Xz In
previous versions of SAS, to obtain the Type Il SS output
only, “fss3” is added to the model statement. The most
recent version now has this Type Ill SS as the default
output; we will assume this default exists for our
subsequent models. A different version of this SAS
statement can be used, if the analyst wants to test for the
lack of fit of this model, by adding “/lackfit’ at the end of
the model statement.
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Model 2: Second, a second order polynomial regression
model was fitted estimating the coefficient for a
quadratic term in X1 for each term in Model 1. The SAS
statements are:

proc GLM; model Y = X1 X2 X1*X1 X1* X2 X1* X1* X2; run

Other models with other kinds of quadratic terms (e.g.,
X2* X2) could also be considered. Indeed, an analyst
may choose to add new terms to Model 1 systematically
and progressively by adding only the “X1*X1” first (i.e.,
omitting the “X1*X1*X2" term in our illustrative Model 2),
then an “X2*X2” term and so on, until reaching a model
that gave an adequate fit. If the researcher's goal was to
find the best regression model, then this progressive
approach is one that could be used (or, the model could
start with all possible polynomial terms and
systematically drop terms shown to be not statistically
significant). Our purpose here is not necessarily to find
the best model, but to show there are many possible
models and hence SAS statements, that could be used
under the sweeping assertions that “using SAS, we ....”

Model 3: Third, a one-way ANOVA model was fitted
including a comparison of pairwise means by the
Duncan’s test (a pairwise test on means). The one-way
ANOVA model analyzed all combinations of the Xi and Xz
factors as though there was one level, referred to as
“tfreatments” with 6 x 2 = 12 levels. The model term
reflecting these treatments is the Ti (Appendix A). The
SAS statement to input treatments is:

data a (=data name); input treatment Y, data lines; data

For the “proc glm” procedure to run an analysis of
variance, it is necessary to include a “class” statement.
In order to carry out Duncan’s test, a “means” statement
is required. Therefore, the SAS statements are:

proc GLM; class treatment; model Y = treatment;
means treatment/Duncan; run

Other tests on means (such as Tukey’s test) could also
be considered as variations of this model.

Model 4: Fourth, a two-way ANOVA model was fitted
obtaining results for each variable (X1 and X2) separately
as well as their interaction term effects. (In the analysis
of variance context, these “variables” are now often
called “factors”™.) The SAS statements become:

proc GLM; class X1 X2; model ¥ = X1 X2 X1*X2; run
The model now replaces the treatment term Ti in Model

3 by its components Ai, B and (AB); (Appendix A). Note
that omission of the X1* X2 term has a consequence
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that interactions between Xi and Xz are not considered
and so is another possible model albeit inadvisable.

Model 5: Finally, this two-way ANOVA of Model 4 was
repeated but the analysis included looking at factor
components such as linear Xi and also interaction
components such as factor by linear and quadratic
terms. Though not evident from its Manuals, SAS can be
instructed to calculate these components (Xz x Linear X1,
etc.) when Xi is a quantitative factor and X: is a
qualitative factor (Billard et af, 2014). A perusal of the
manual suggests these components (e.g., Xz x Linear
Xi) are not calculated directly by a SAS procedure.
However, one factor components such as Linear Xi ata
specific level (level 1 or 2) can be calculated (e.g., Myers,
1971). Further, statistical inference may indicate that the
interaction effect is not statistically significant when in
fact it is significant at differing levels of the factors
involved. Applying the Billard et al. (2014) methodology
to the current example, we can obtain these interaction
components. The SAS statements for Model 5 are
presented elsewhere (Billard et a/., 2014).

Likewise, SAS can also be instructed to calculate the
components (X: x Quadratic Xi, etc) when Xi is a
quantitative factor and Xz is a qualitative factor as well as
the components (Linear Xi x Linear Xz, Linear Xi x
Quadratic Xz, etc.) when both Xi and Xz are quantitative
factors (Billard et af., 2014).

When there are more than two factors, e.g., X1, Xo and X,
ahalogous model choices can be made. Thus, the SAS
model statements for Model 1, Model 4 and Model 5
become:

model Y = X1 X2 X3 X1*X2 X1*X3 X2*X3

where, the class statement is omitted in Model 1 but
becomes “class X1 X2 X3” in Model 4 and Model 5.

RESULTS

Casual observation of the data suggests that there is an
interaction between Xi and Xo with respect to how they
influence Y (Fig. 2). Three of the five SAS GLM
procedures suggest different conclusions (Table 2).
Clearly, not all can be correct for the actual experiment
as run to produce the data and/or for different goals.
These differences become self-evident by using the
different models/analyses on the same data.
Therefore, it is essential that the researcher specifies
completely how the experiment was conducted, what
model is being used and what analysis is being
implemented.

For the linear regression model (Model 1; Fig. 3), we see
that X and the 3 x X2 interaction term had significant
p-values (0.025 and 0.014, respectively). The significant
interaction indicates that both Xi and Xz are influencing
variation in Y and the influences are interdependent.
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Table 2: Comparison of SAS models used to analyze the same experimental data

Source DF Type Il 5S Mean Square F Value Pr=F

Model 1. Linear Regression Model (proc gim with no class statement) ¥ = 7.54060 + 0.64393 X1 + 0.02611 X2 — 0.00419 X1X2

X 1 116.100 116.100 1.24 0.271

X2 1 500.734 500.734 5.36 0.025

X1 Xz 1 615.514 615.514 6.59 0.014

Error 44 4110483 93420 - -

Total 47 4820.331 - - -

Model 2. Second Order Polynomial Regression Model (proc gim with no class statement)

Y = 744826 + 0.68046 X1 + 0.03851 X2 — 0.00379 X1° - 0.01031 X1X2 + 0.00051 X1°X2

X1 1 7446 7.446 0.08 0.780

Xz 1 443492 443.492 4.70 0.036

X1 1 0.034 0.034 0.00 0.985

Xi*Xz 1 208.046 208.046 2.21 0.145

XiPX1* Xz 1 77.538 77.538 0.82 0.370

Error 42 3959.957 94.285 - -

Total 47 4820.331 - - -

Model 3. One-way ANOVA (proc gim with class statement)

Treatment 11 808.657 81.696 0.75 0.685

Error 36 3921.674 108.935 - -

Total 47 4820.331 - - -
Duncan: pz = 22.775 M1 =7.033
A A
Treatments: 2,11, 4,5,9,7,6,3,8,12 1, 10

Model 4. Two-way ANOVA (proc glm with class statement)

X1 5 177.188 35438 0.33 0.894

Xz 1 2.723 2723 0.02 0.875

Xi*Xz 5 718.746 143.749 1.32 0.278

Error 36 3921.674 108.935 - -

Total 47 4820.331 - - -

Model 5. Two-way ANOVA including interaction contrast with Linear and Quadratic terms (proc gim with class statement)

X1 5 177.188 35438 0.33 0.894

Lin X1 1 o1.612 g1.612 0.84 0.365

Quad X1 1 72.988 72.988 0.67 0418

Xz 1 2.723 2723 0.02 0.875

X1 Xz 5 718.746 143.749 1.32 0.278

Xz*LinX 1 615.514 615.514 5.65 0.023

X2*Quad X1 1 77.538 77.538 0.71 0404

Error 36 3921.674 108.935 - -

Total 47 4820.331 - - -

The second model was designed to test the hypothesis 25 - 0x%=0

that there is a second order effect of Xs on Y and an [ ° Xi =500

interaction hetween X1 and Xz with respect to Y (Model 2; 201

Fig. 4). If we use a second order polynomial regression

model, only Xz had a significant p-value (0.036). S 157

Using a one-way ANOVA design with Duncan’s New 104

Multiple Range Test included (Model 3; Fig. 5), we found

that no differences between treatments were detected 5

(p = 0.685). For the 12 treatments, the means ranged

Xy = Xig = i 0 T T T T T 1
from Xo = 22775, ..., Xin = 7.033. Thus, even Wz is not 5 7 J . : 10 1

statistically significantly different from pi by Duncan’s
New Multiple Range Test, for these data. This is
because the standard deviation (10.437) is large relative
to the range (15.742 = 22.775-7.033) of treatment mean
values (i.e., |15.742|<(1.96)(10.437) = 20.457).

The fourth model (Model 4; Fig. 6) was a two-way ANOVA
design including classification variables. From the
ANOVA table for this model, there was very little
indication that any of the effects (either Xi, X2) were
influencing the variation in Y since the p-values are all
substantially greater than 0.05. This includes the
interaction effect (p 0.278) despite any insights
suggested by Fig. 2.
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Fig. 2. Graphical representation of the means of the
data

The fifth model (Model 5; Fig. 7) was a two-way ANOVA,
as was the fourth model, but now the analysis was
extended to include main effect and interaction
components. In particular, since Xi is a quantitative
factor {i.e., the levels are numerical values, here, X1 =1,
3,5,7,9, 11, Table 1), we can test whether or not there
is a linear trend across these levels. Here, since X2 is a
qualitative factor (with or without phytase), we can
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Fig. 3: Linear Regression Model (Model 1)

SAS (SAS Institute, 2006) Output for the model: Proc GLM; model Y = X1 X2 X1*X2.
The SAS System
The GLM Procedure

Dependent Variable: Y

Sum of Source DF Squares Mean Square F Value Pr=F
Model 3 700.848711 236.616237 2.53 0.0892
Error 44 4110.482672 93.420061
Corrected Total 47 4820.331383
R-Square Coeff. Var. Root MSE Y Mean
0.147261 83.01934 9.665405 11.64235
Source DF Type lll 58 Mean Square F Value Pr=F
X1 1 116.1003214 116.1003214 1.24 0.2710
X2 1 500.7343978 500.7343978 5.36 0.0253
X1*X2 1 615.5135432 615.5135432 6.59 0.0137
Standard
Parameter Estimate Error t Value Pr=|t|
Intercept 7.540595238 3.98793846 1.89 0.0652
X1 0.643928571 0.57761845 1.1 0.2710
X2 0.026114221 0.01127959 2.32 0253
X1*X2 -0.004193579 0.00163375 -2.57 0.0137
Fig. 4: Second Order Polynomial Regression Model {Model 2)
SAS (SAS Institute, 2006) Qutput for the model: Proc GLM; model ¥ = X1 X2
X1PX1 X152 X1 X1:X2.
The SAS System
The GLM Procedure
Dependent Variable: Y
Sum of
Source DF Squares Mean Square F Value Pr=F
Model 5 860.374686 172.074937 1.83 0.1287
Error 42 3959.956697 94.284683
Corrected Total 47 4820.331383
R-Square Coeff. Var. Root MSE Y Mean
0.178489 83.40263 9.710030 11.64235
Source DF Type lll S8 Mean Square F Value Pr=F
X1 1 7.4462143 7.4462143 0.08 0.7801
X2 1 443.4923067 443.4923067 4.70 0.0358
X1*X1 1 0.0344048 0.0344048 0.00 0.9848
X1*X2 1 208.0463640 208.0463640 2.21 0.1449
X1*X1*X2 1 77.5384275 77.5384275 0.82 0.3697
Standard
Parameter Estimate Error t Value Pr=|t|
Intercept 7.448258929 6.27821179 1.19 0.2421
X1 0.689464286 2.45337866 0.28 0.7801
X2 0.038512652 0.01775746 217 0.0358
X17X1 -0.003794643 0.19864709 -0.02 0.9848
X1*X2 -0.010307873 0.00693920 -1.49 0.1449
X1*X1*X2 0.000509525 0.00056186 0.91 0.3697

calculate the component Xz x linear X1 (i.e.,, we are
testing: does the linear trend across levels of X differ
when phytase is present from that when it is not
present). The interaction between 3 and (linear X1) had
a significant p-value (0.023) indicating that the linear
trend across levels of Xi is indeed different when
phytase is present from the corresponding trend when
phytase is not present. This statistically identifies the
signhificant interaction component observed in Fig. 2.
These five different statistical models for the GLM
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procedure using SAS are presented in Appendix A. A
summary of the corresponding analysis is provided in
Table 2. From this, it is clear that different analyses have
produced different results, again re-iterating the
necessity to be specific about what is actually being
done.

DISCUSSION
From a biological perspective, both Xi and Xz are known
toinfluence ¥ and the experiment was conducted to
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Fig. 5: One way ANOVA Model (Model 3)
SAS Output for the model: Proc GLM; Class treatment; model
Y = treatment; means treatment/Duncan

The SAS System
The GLM Procedure
Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr=F
Model 11 898.657216 81.696111 0.75 0.6848
Error 36 3921.674167 108.935394
Corrected Total 47 4820.331383

R-Square Coeff. Var. Root MSE Y Mean

0.186431 B9.64864 10.43721 11.64235
Source DF Type | SS Mean Square F Value Pr=F
treatment 11 898.6572162 81.6961106 0.75 0.6848
Source DF Type lll S8 Mean Square F Value Pr=F
treatment 11 898.6572162 81.6961106 0.75 0.6848

Duncan's Multiple Range Test for Y
NOTE: This test controls the Type | comparisonwise error rate, not the experimentwise error rate.

Alpha 0.05
Error Degrees of Freedom 36
Error Mean Square 108.94
Nurmber of Means 2 3 4 5 6 7 8 9 10 1 12

Critical Range 14.97 15.74 16.24 16,60 16.87 17.08 17.26 17.40 17.52 1763 17.71
Means with the same letter are not significantly different.
treatment

2
11

Duncan Grouping Mean
22.775
15.650
15.100
12.500
11.900
10.825
10.550
10.275
8.050
7.775
7.275
7.033

IS

PrEBRERRRPR PP

AR R RARAERAELRERRZ
O=MNODOWwW®~w0wWn

-

Fig. 6: Two-way ANOVA Model (Model 4)
SAS (SAS Institute, 2006) Qutput for the model: Proc GLM; Class X1 X2; model Y =
X1 X2 X1*X2;

Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr=F
Model 11 898.657216 81.606111 0.75 0.6848
Error 36 3921.674167 108.935394
Corrected Total 47 4820.331383

R-Square Coeff. Var. Root MSE Y Mean

0.186431 89.64864 10.43721 11.64235
Source DF Type lll 58 Mean Square F Value Pr=F
X1 5 177.1879551 35.4375910 0.33 0.8944
X2 1 2.7231977 2.7231977 0.02 0.8753
X1'X2 5 718.7460634 143.7492127 1.32 0.2778

determine the magnitude of the responses in the range herein some of the strengths and weaknesses of the
of levels studied for a particular genotype. We highlight five possible modelsfanalyses used (in the context that
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Table 3: Comparison of Type | S5 and Type Il 5S used to analyze the same experimental data

Source DF Type | 8S Mean Square F Value Pr=F
Type | SS (a)

X 1 201.113 201.113 2.16 0.150
X2 1 5.272 5.272 0.06 0813
XitXa 1 676.662 676.662 7.26 0.010
Error 40 3730.124 93.253 - -
Total 43 4613.172 - - -
Type | SS (b)

X2 1 7.510 7510 0.08 0.778
X1 1 198.875 198.875 213 0.152
Xzt 1 676.662 676.662 7.26 0.010
Error 40 3730.124 93.253 - -
Total 43 4613.172 - - -
Type lll S (c)

X1 1 65.025 65.025 0.70 0.409
X2 1 527.921 527.921 5.66 0.022
XitXa 1 676.662 676.662 7.26 0.010
Error 40 3730.124 93.253 - -
Total 43 4613.172 - - -
Table 4: Comparison of Type | 55 and Type Il SS (no interaction)

Source DF Type | 5S Mean Square F Value Pr=F
Type | S

X1 1 201.113 201.113 1.87 0.179
X2 1 5272 5.272 0.05 0.826
Error 41 4406.786 107.483 - -
Total 43 4613.172 - - -
Type | S

X2 1 7.510 7.510 0.07 0.793
X 1 198.875 198.875 1.85 0.181
Error 41 4406.786 107.483 - -
Total 43 4613.172 - - -
Typelll 5§

X1 1 198.875 198.875 1.85 0.181
X2 1 5272 5.272 0.05 0.826
Error 41 4406.786 107.483 - -
Total 43 4613.172 - - -

the model, e.g., regression as opposed to analysis of
variance, was appropriate). Thus, for these data, if the
object was to identify the relationship that exists between
vitamin D and/or phytase on tibial dischrondroplasia
incidence, the Model 1 (or Model 2 and its variations)
is the best model to pursue; but if the object is to
ascertain the effects of different levels of vitamin D and
phytase on tibial dischrondroplasia incidence, then the
analyses of Model 4 or 5 are better. That is, as
elucidated earlier the choice of appropriate statistical
model and analysis is dependent on what the
researcher hopes to learn from the experiment and
crucially on how the experiment was run. Further, nctice
that the model statement in the SAS code is identical for
Models 1, 4 and 5. However, in Model 1, there is no
“class” statement, with the result that SAS carries out a
regression analysis; whereas with the “class” statement
in Models 4-5, SAS gives an analysis of variance result
{which for this experiment is the correct approach).

Model 1 strengths Regression is a form of analysis in
which the relationship between one or more
independent variables and the dependent variable as a
linear combination of one or more model predictor
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variables is each weighted by so-called “regression
coefficients”. A linear regression model is such that the
dependent variable is linearly related to each of the
predictor variables and represents a straight line when
the predicted value is plotted against the independent
predictor variable. When there is only one predictor
variable under consideration, this is called a simple
linear regression. This model is simple and easy to
interpret.

Model 1 weaknesses A basic weakness of this model is
this simplicity, if no attempt is made by the analyst to
consider other fit options such as those delineated e.g.,
in Model 2 above; this includes the failure to include a
lack-of-fit calculation.

In a different direction, one assumption for linear
regression is that observations are selected at random
from the population of interest; ancther is that the error
terms follow identical and independent normal
distributions, with zero mean and common variance &’
for all levels of the treatments. Violation of the normality
assumption on the error terms is usually of no
consequence unless the sample size is very small. This
follows from central limit theorems (Rice, 1995) which
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imply that, as long as the error terms have finite variance
and are not too strongly correlated, the parameter
estimates will be approximately normally distributed
even when the underlying errors are not. Researchers
often neglect to check for common variances. Thus,
violation of the common variance assumption may be
considered a weakness. However, it does not have to
be, because there are variance stability transformations
which can be introduced to take account of this. Rather
than a weakness of the model, this is really a weakness
of the analysis itself. Since our goal here is to show how
different analyses can lead to different results (including
a failure to check the normality and variance
assumptions), we note only that these same comments
apply to all models considered here and so will not be
repeated.

Model 2 strengths Since Xi had more than 2 levels, this
model could include a second order term (e.g., X:*) and
also the interaction of the second order of Xi and Xz (X
x X2). Note these higher order terms are equivalent to
additional first order variables (e.g., Xi* = X3) so that the
linear regression model still pertains and as formulated
here it is still relatively simple. The error degrees of
freedom are reduced by one for each additional term; but
now the possibility of an interaction between Xi and Xz
(e.g.) is included in the model. If the analyst includes the
option to investigate yet further higher order terms, then
this becomes a strength.

Model 2 weaknesses. The weaknesses are the same
as for Model |. If the analyst does not include the option
to investigate the inclusion of other higher order terms
and/or the non-significance of any of the lower order
terms (of Model 1), then this can be seen as a
weakness. On the other hand, trying to consider all
these options can be time consuming. Further, it can be
difficult to interpret (some) higher order terms
biologically.

Model 3 strengths One-way ANOVA is used to test for
differences between two or more independent factors. In
theory, these tests can be used on any kind of
treatments (all qualitative, all quantitative, mixture of
gqualitative and quantitative as in our case), see any
introductory text on design (e.g., Steel and Torrie, 1960).
The investigator is often interested in determining
treatment combinations of these factors that maximize or
minimize responses. The Duncan’s, Tukey's, or other
Multiple Range tests appear to discriminate between
these treatments, suggesting one treatment is better,
the same, or worse than another (Duncan, 1955; Tukey,
1949; Snedecor and Cochran, 1967).

Model 3 weaknesses Multiple Range tests (Duncan’s,
Tukey's, etc.) are frequently used. On balance, it is
inadvisable to use them because of a lack of power.
Multiple Range tests result in too high an experiment-
wise error rate which does not control Type | error
(Boardman and Moffitt, 1971). It assumes there is no
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order among the different levels of the independent
variables, but there most often really is (especially for
quantitative factors). That is, it assumes the different
treatments could be inputas A, B, Caswellas 1, 2, 3 or
B, A, C. In reality, a treatment factor of 2.51 may be that
best response between 1.00 and 3.00. One-way ANOVA
models cannot identify this, whereas a multiple
regression model could. The same concerns prevalil
when using the least significant difference test (LSD),
Morris (1999, 1983). Furthermore, if interaction exists
between the factors, fitting one-way ANOVA models on
treatment combinations is unable to identify such
interaction. When, as for our data, there are quantitative
factors involved, a far better way, without loss of
sensitivity, is to calculate the orthogonal contrasts (i.e.,
comparisons) of Model 5.

Model 4 strengths When there is more than one factor
(as for our case), then this model (unlike the
“treatments” of Model 3) separates out the various
factors and therefore can test for an interaction of
independent variables effects on the dependent variable.
It also allows for the contrast calculations such as linear
and quadratic trends (or the interaction contrasts of
Model 5).

Model 4 weakness A weakness is that the analysis can
be non-informative unless the contrast components
(see Model 5) are calculated. For example, for our data,
the analysis suggests there is no significant interaction
(between X1 and X2) whereas in fact there are
significant interactions (Fig. 2).

Model 5 strengths Significant differences between input
variable levels should be detected as well as whether
the differences appear to follow linear or quadratic
trends, with the default being linear. Although the
interaction between X1 and Xz may or may not be found
to be significant, by testing for components of interaction,
we can identify any interaction of Linear Xi trends across
the various levels of Xo, which for our data were
significant. In our case, when levels of X2 are ignored,
the interaction effects effectively “cancel” out and so the
interaction (X1 x X2) test alone suggests they are not
significantly different.

Model 5 weakness. It is hard to program codes for SAS
(SAS Institute, 2006) and other programs to extract these
interaction components. Billard et af. {2014) gives some
guidance on these calculations.

Which model is the most appropriate to answer the
question: “Do Xi and X2 influence Y and is there a
significant interaction between the variables in the
ranges studied?” Had we conducted the third or fourth
models first, we may well have concluded there is no
effect of either Xi or X2 on Y. However, only the simplest
regression model (Model 1) and the most complex
ANOVA (Model 5) indicate that there is, indeed, a
significant interaction between Xi and X with respect to
Y (Table 1). Testing for the quadratic effect of Xi (adding
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Fig. 7: llustration of partial SAS output generated from two-way ANOVA including interaction contrast with Linear and Quadratic terms (Model 5)

Dependent Variable: Y

Sum of
Source DF Squares
Model 11 898.657216
Error 36 3921.674167
Corrected Total 47 4820.331383
R-Square Coeff. Var. Root MSE
0.186431 89.64864 10.43721
Source DF Type lll 58
X2 1 2.7231977
X1 5 177.1879551
XX 5 718.7460634
Contrast DF Contrast 5SS
Linear X1 1 91.6119696
Lin X1@X2_1 1 116.1003214
Lin X1@x2_2 1 591.0251914
Contrast DF Contrast S5
Quad X1 1 72.9875478
Quad X1@X2_1 1 0.0344048
Quad X1@X2_2 1 150.4915705

Mean Square F Value Pr=F
81.606111 0.75 0.6848
108.935394

Y Mean

11.64235

Mean Square F Value Pr=F
2.7231977 0.02 0.8753
35.4375910 0.33 0.8944
143.7492127 1.32 0.2778
Mean Square F Value Pr=F
91.6119696 0.84 0.3652
116.1003214 1.07 0.3088
591.0251914 5.43 0.0256
Mean Square F Value Pr=F
72.9875478 0.67 0.4184
0.0344048 0.00 0.9859
150.4915705 1.38 0.2476

X2*LinearX1 Contrast

(X2*LinearX1)SS = 615.51354322
(X2*LinearX1)MS = 615.51354322
(X2*LinearX1)F = 56502622639
(X2*LinearX1)P-value = 0.0228891549

X2*QuadX1 Contrast

(X2"QuadX1)SS = 77.538427513
(X2"QuadX1)MS = 77.538427513
(X2*QuadX1)F = 0.7117836087
(X2*QuadX1)P-value = 0.4044236385

X1 x X2 to the GLM model in Model 2) obscures the
significance of the X4 x Xz interaction. The ocne-way and
two-way ANOVA models do not indicate the presence of
significant interaction components until, in Model 5,
the Xz x Linear X1 effect is factored out of the 5 df for the
X1 x Xo interaction. Whenever the interaction is
significant, it is clear that all the independent variables
are influencing the dependent variables even though
further analyses are necessary to determine the nature
of that inter-dependence. However, as seen in the
present data set, significant p-values for Xi and X are
not necessary to conclude the interacting factors are
influencing Y since their influence may be as an
interaction component such as the Xz x Linear X1 term
observed in our dataset.

In a different direction, there is the issue of whether the
Type | or Type lll SS should be used when data has
unequal replications. To illustrate, observation 44, 46, 47
and 48 were deleted in this case to give unequal
replications (Table 1). The Type | SS is a sequential
procedure with the SS for the different effects calculated
incrementally depending on the order these effects
appear in the model statement. For example, when the
model statement is:
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model Y = X1 X2 X1*X2

the Type | SS are as shown in Table 3 (a). In contrast,
when the model statement is:

model Y = X2 X1 X1*X2

(i.e., the order of Xi and X is reversed), the Type | SS are
as shown in Table 3 (b). Thus, the S5 associated with
the factor Xi differs in the two cases. However, the sum
(SS X1 + 88 X9) is the same for each model. In contrast,
the Type lll S5 shown in Table 3 (c) gives the same
results regardless of the order written in the model
statement. The same phenomena prevail if there is no
interaction term (Table 4). Notice that when no
interaction term is included, the error MS has a different
value; and this also clearly impacts on the F and p-
values.

Further, when each variable in X (treatment) has a
different number of replications, i.e., when the data are
unbalanced, Type | and lll SS give different results.
Again, when the data have different numbers of
replications per cell, we should use Type Il SS. Overall,
Searle (1987, 1995) suggests that it is preferable to use
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Appendix A: Five different models for GLM procedure using SAS

The linear regression model (Model 1):

Yi=PBo o+ BiXy + B X + B X X + g

The second order polynomial regression model (Model 2):

Y =By BX B Xy + B+ B X X + B XX + 8

The one-way ANOVA model (Mocdel 3):
Yij=Hd+Ti+ 8 I1=1,...,t
ji=1 ...
where p = overall mean
Ti = i* treatment effect
ei] = observational error for (ij)" observation
Yij = observation for j* replication on treatment

The two-way ANOVA model (Model 4 and Model 5):
Yik = p + Al +Bi+AB)i+ ek a
b

1,...,r

S
ST

= —
n

where p = overall mean
A =i" A factor effect
Bj =j* B factor effect
Abj = interaction between factor A and B effect
eijk = observational error for (jjk)*" observation

Yijk = observation for k" replication on factor A and B effect

The two-way ANOVA model including linear and quadratic terms (Model 5) is the same as Model 4, but the analysis is extended to include linear and
quadratic contrasts. The extended linear and quadratic contrasts statements are presented in Billard ef a/. (2014).

In each of these models, e refers to the observational error, Y is the response variable (tibial dyschondroplasia percent incidence, in our case), X1
(vitamin D) and X2 (phytase) are the regression variables for regression models (as in Models 1-2), with A and B being the factors (corresponding to
our vitamin D and phytase) of an analysis of variance model and X1Xz (or, AB) are interaction terms

the Type Il SS exclusively rather than the Type | SS,
though Nelder (1994) prefers the Type | S5 approach.
Clearly, when there is only one factor (as in Model 3 with
output in Fig. 8), the same result occurs for both Type |
and Type lll SS.

The PROC ANOWVA procedure performs an analysis
of variance for balanced designs (SAS Institute, 2006).
We note here that (with few exceptions such as a
one-factor design) to use PROC ANOVA, we must have
a balanced design. The PROC GLM procedure is
generally more efficient than is PROC ANOVA for
these designs. The default use of PROC GLM cbviates
the need to be concerned with unequal replication
numbers.

What terminclogy should be used to -effectively
communicate just how ANOVA was used and how
results were calculated? Presently, complete
programming statements would seem to be necessary
when a package is used. As we have illustrated in this
paper, in the absence of such statements, the reader
cannot properly interpret the results or repeat the
procedure, since accurate details of the analysis used
are missing. Detailed explanations of SAS (SAS Institute,
2006) programming statements are available on the
internet on an unrestricted basis. Therefore, readers
practically anywhere can learn how calculations were
made. Complete explanations of how the statistical
packages are used should be available, if readers are to
properly interpret computations that were made and
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correctly interpret the reported results. It would be better
if computational methods could be included in
manuscripts if they are not excessively long.

We reiterate the importance of the earlier papers to plant
science (Chew, 1976, Little, 1978, Nelson and
Rawlings, 1983; Swallow, 1984). The arguments are
equally important to poultry science. Finally, the
principles elucidated in the present work extend those of
Morris (1983, 1999). In particular, the progression of
models presented herein does not stop at just
comparing treatment means, but we advocate more
detailed analyses by testing for responses starting with
linear trends and interaction response components.

The Poultry Science Instructions for Authors state:
“Statistical methods commonly used in the animal
sciences need not be described in detail, but adequate
references should be provided.” However, it is
necessary to know the details of how an experiment was
conducted and hence how statistical analyses are
performed to come to the same conclusions from even
the same data (as detailed above). We therefore believe
that statistical methods must be described in detail,
including programming statements to avoid any
possible ambiguity. A statement of how statistical
package results were interpreted should also be
included. The statement should be found in Materials
and Methods. Also, it is particularly important to know
whether probabilities that are presented are based on
Type | or Type Il sums of squares.
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