ISSN 1682-8356 ansinet.org/ijps

POULTRY SCIENCE

ANSImet

308 Lasani Town, Sargodha Road, Faisalabad - Pakistan Mob: +92 300 3008585, Fax: +92 41 8815544 E-mail: editorijps@gmail.com International Journal of Poultry Science 9 (9): 824-827, 2010 ISSN 1682-8356 © Asian Network for Scientific Information, 2010

Meta-analysis of Laying Hen Trials Using Diets With or Without Allzyme® SSF Enzyme Complex

D.M. Hooge¹, J.L. Pierce², K.W. McBride² and P.J. Rigolin²
¹Hooge Consulting Service, Inc., Eagle Mountain, Utah, USA
²Alltech, Inc., Nicholasville, Kentucky, USA

Abstract: A statistical meta-analysis was conducted using results from 16 laying hen trials (1995-2008; plus some undated reports) from several countries to demonstrate effects of a dietary enzyme complex (+SSF; Allzyme® SSF, Alltech, Inc., Nicholasville, Kentucky USA) versus no supplement (nCON, negative control) on 6 performance parameters. The paired t-test (Statistix 8, Analytical Software, Tallahassee, Florida USA) was used in the statistical analysis. A total of 26 comparisons from 16 trials were possible for hen-day egg production, egg weight and daily egg mass production and 24 comparisons from 14 trials were possible for daily feed intake, feed/dozen eggs and kg feed/kg eggs. Overall averages for the parameters were calculated and levels of significance (p-values) were given. The inclusion rates for the enzyme product in the diets was listed. Hen-day egg production was numerically (p = 0.136) improved by 1.09% actual (+1.29% relative) for +SSF compared to nCON diets. Egg weight was significantly (p = 0.006) greater for eggs from hens fed +SSF rather than nCON diets (+0.89 g or +1.49%). Daily egg mass produced was significantly greater (p = 0.014) for +SSF than for nCON fed hens (+1.74 g/hen/day or +3.47%). Feed intake was numerically (p = 0.281) lowered by 0.50 g/hen daily (-0.44%) by using +SSF diets compared to nCON diets. Feed/dozen eggs was significantly (p = 0.028) reduced by 0.027 kg/dozen (1.65%) and kg feed/kg eggs was significantly (p = 0.004) reduced by 0.069 (3.04%) for +SSF diets compared to nCON diets. Enzyme supplementation (Allzyme® SSF) at 150 g/tonne of feed is recommended to improve the egg weight, daily egg mass and feed conversion ratios of laying hens.

Key words: Allzyme SSF, enzymes, laying hens, meta-analysis, metabolizable energy, performance

INTRODUCTION

An enzyme complex manufactured by solid-substrate fermentation, rather than conventional liquid fermentation, and containing phytase, starch and nonpolysaccharide enzymes is commercially available for use in laying hen diets (Allzyme® SSF, Alltech, Inc., Nicholasville, KY). This enzyme product is derived from a naturally selected (non-genetically modified) strain of Aspergillus niger produces phytase, xylanase, protease, cellulase, beta-glucanase, amylase (Wu et al., 2003), pentosanase and pectinase (Sundu et al., 2004). This is a natural complex or system of enzymes of fungal origin.

When the enzyme complex product is included in laying hen feeds at a level of 0.015% (150 g/tonne), it is estimated to release 75 kcal ME/kg (34 kcal ME/lb), 0.1% calcium and 0.1% available phosphorus, as well as 0.2% crude protein, 0.029% lysine, 0.0.11% methionine, 0.009% cysteine, 0.004% tryptophane, 0.014% threonine, 0.024% isoleucine and 0.022% arginine.

This article provides a statistical meta-analysis of 16 feeding trials with laying hens in which effects of negative control and enzyme supplemented diets on productive performance were compared. Using the overall average responses, egg producers can calculate the benefit:cost ratios by production parameter for the enzyme supplement.

MATERIALS AND METHODS

A total of 16 reports, articles and slide presentations collected worldwide allowed comparisons of the effects of negative control (nCON) vs. enzyme supplemented (+SSF) diets on laying hen performance. Countries of origin included Australia, Brazil, China, Colombia, India, Mexico, Poland and Thailand. The results were analyzed by paired t-test using Statistix 8 (Analytical Software, Tallahassee, Florida; www.statistix.com) to obtain overall averages for each of the 6 parameters: hen-day egg production, egg weight, daily egg mass, feed consumption, feed/dozen eggs and kg feed/kg eggs. The levels of significance for the paired t-tests were reported as p-values. The inclusion rates of the enzyme product in the supplemented diets were listed.

RESULTS AND DISCUSSION

Hen-day egg production was numerically (p = 0.136) improved by 1.09% actual (+1.29% relative) for +SSF compared to nCON diets (Table 1). Egg weight was significantly (p = 0.006) greater from hens fed +SSF rather than nCON diets (+0.89 g or +1.49%) (Table 1). Daily egg mass produced was significantly greater (p = 0.014) for +SSF than for nCON fed hens (+1.74 g/hen/day or +3.47%) (Table 1). Feed intake was numerically lowered by 0.50 g/hen daily (-0.44%) by using +SSF diets compared to nCON diets (Table 2).

Table 1: Statistical meta-analysis of hen-day egg production, egg weight and daily egg mass in 16 laying hen trials worldwide providing 26 comparisons of negative control (nCON) versus Allzyme^e SSF (+SSF) supplemented diets

Reference	Level of SSF g/tonne ¹	zyme° SSF (+SSF) supplemented diet Hen-day egg % (vs 0)		Egg weight, g. production, %		Daily egg mass, g/hen/day	
		nCON	+SSF	nCON	+SSF	nCON	+SSF
Collazos (undated)	1,000	92.37	93.12	56.96	60.63	48.60	56.46
Collazos (undated)	1,480	92.37	94.65	56.96	61.52	48.60	58.23
Collazos (undated)	1,830	92.37	92.63	56.96	60.21	48.60	55.77
Collazos (undated)	1,000	89.14	94.71	58.69	59.11	52.32	55.98
Collazos (undated)	1,480	89.14	92.96	58.69	61.39	52.32	57.07
Collazos (undated)	1,830	89.14	93.00	58.69	60.67	52.32	56.42
Devegowda et al., 2008	1,000	91.38	91.80	54.10	54.10	49.44	49.66
Devegowda et al., 2008	1,000	89.72	90.69	53.30	55.80	47.82	50.61
Kaminska <i>et al.</i> , 1995	1,000	80.40	86.60	61.70	61.60	49.61	53.35
Kaminska <i>et al.</i> , 1995	1,000	86.60	85.00	61.50	60.80	53.26	51.68
Kaminska <i>et al.</i> , 1995	1,000	86.50	85.30	61.10	61.50	52.85	52.46
Rossi <i>et al.</i> , 2007	150	75.63	74.83	54.80	55.57	41.45	41.58
Rossi <i>et al.</i> , 2007	150	81.68	80.06	60.08	61.73	49.07	49.42
Rossi et al., 2006	150	75.66	74.50	55.33	55.75	41.84	41.55
Rossi <i>et al.</i> , 2006	150	81.95	90.05	59.90	62.12	49.11	49.78
BARC (Undated)	200	94.60	95.45	63.60	63.30	60.17	60.42
Rutz (undated)	150	86.30	85.65	56.70	56.23	48.93	48.16
Arrieta and Valle, 2008	150	71.27	79.64	63.39	62.77	43.81	49.99
Nunes <i>et al.</i> , 2007	150	80.86	76.65	65.69	66.29	53.12	50.81
Gentilini et al., 2007	150	88.56	88.74	60.60	59.28	53.67	52.61
Avila and Fuente, 2006	150	69.00	72.00	66.00	66.00	45.00	47.00
Dallmann et al., 2006a	150	84.20	85.40	64.00	65.00	53.89	55.51
Dallmann et al., 2006b	150	90.60	82.20	65.00	66.00	58.89	54.25
Quigang et al., 2004	200	78.44	78.57	62.38	62.42	48.94	49.03
Cheng et al., 2004	200	88.00	87.59	54.44	54.43	47.91	47.68
Nunes et al., 2007	50	78.80	81.23	64.75	64.26	51.02	52.20
Avg		84.80	85.89	59.82⁵	60.71ª	50.09⁵	51.83°
Diff.			+1.09		+0.89		+1.74
Diff., %			+1.29		+1.49		+3.47
p-value			0.136		0.006		0.014

¹There was a change in concentration of the product allowing lower inclusion rates in references Rossi *et al.*, 2007 though Nunes *et al.*, 2007. Note that amount released was always considered to be 0.1% for calcium and 0.1% for available phosphorus.

Table 2: Statistical meta-analysis of feed intake, feed/dozen eggs and feed/kg eggs in 15 laying hen trials worldwide providing 24 comparisons of negative control (nCON) versus Allzyme® SSF (+SSF) supplemented diets

Reference	Level of SSF g/tonne ¹	Feed intake, g/hen/day		Feed kg/dozen eggs		Feed kg/kg eggs	
		nCON	+SSF	nCON	+SSF	nCON	+SSF
Collazos (undated)	1,000	115.1	114.5	1.495	1.476	2.150	2.050
Collazos (undated)	1,480	115.1	114.9	1.495	1.457	2.150	1.920
Collazos (undated)	1,830	115.1	114.3	1.495	1.481	2.150	2.070
Collazos (undated)	1,000	116.3	116.8	1.566	1.480	2.170	1.980
Collazos (undated)	1,480	116.3	115.4	1.566	1.490	2.170	2.000
Collazos (undated)	1,830	116.3	115.7	1.566	1.493	2.170	2.020
Kaminska et al., 1995	1,000	128.0	128.0	1.910	1.774	2.580	2.399
Kaminska et al., 1995	1,000	126.0	126.0	1.746	1.779	2.366	2.438
Kaminska et al., 1995	1,000	126.0	126.0	1.803	1.773	2.460	2.402
Rossi et al., 2007	150	86.27	86.54	1.730	1.750	2.680	2.630
Rossi et al., 2007	150	88.57	88.80	1.630	1.670	2.280	2.270
Rossi et al., 2006	150	108.3	108.5	1.718	1.748	2.640	2.620
Rossi et al., 2006	150	110.7	111.0	1.621	1.479	2.260	2.240
BARC (Undated)	200	112.0	112.0	1.421	1.408	1.864	1.849
Rutz (undated)	150	111.1	111.8	1.545	1.552	1.960	1.970
Arrieta and Valle, 2008	150	108.0	107.7	-	-	2.465	2.154
Nunes et al., 2007	150	119.7	116.0	1.770	1.820	2.290	2.290
Gentilini et al., 2007	150	115.9	111.7	1.570	1.510	-	-
Avila and Fuente, 2006	150	99.00	105.0	1.722	1.750	2.207	2.216
Dallmann et al., 2006a	150	114.9	108.9	1.640	1.540	2.132	1.962
Dallmann et al., 2006b	134.0	129.0	1.770	1.760	2.275	2.378	
Quigang et al., 2004	200	116.3	115.8	1.778	1.769	2.376	2.362
Cheng et al., 2004	200	111.2	110.9	1.517	1.519	2.322	2.326
Nunes <i>et al.</i> , 2007	150	109.3	111.4	1.664	1.645	2.142	2.133
Avg	113.3	112.8	1.641ª	1.614⁵	2.272	2.203°	
Diff.		-0.50		-0.027		-0.069	
Diff., %		-0.44		-1.65		-3.04	
p-value		0.281		0.028		0.004	

¹There was a change in concentration of the product allowing lower inclusion rates in references Rossi *et al.*, 2007 though Nunes *et al.*, 2007. Note that amount released was always considered to be 0.1% for calcium and 0.1% for available phosphorus.

Feed/dozen eggs was significantly (p = 0.028) reduced by 0.027 kg/dozen (1.65%) for +SSF diets compared to nCON diets (Table 2). Similarly, kg feed/kg eggs was significantly (p = 0.004) reduced by 0.069 (3.04%) for +SSF diets compared to nCON diets (Table 2).

Enzyme supplementation numerically improved two production parameters (hen-day egg production and feed intake) and significantly improved four other production parameters (egg weight, daily egg mass, feed/dozen eggs and kg feed/kg eggs). In conclusion, overall results of the meta-analysis revealed that +SSF diets numerically increased hen-day egg production and decreased feed intake and significantly increased egg weight and daily egg mass and reduced feed/dozen eggs and kg feed/kg eggs. Therefore, enzyme supplementation (Allzyme® SSF) at 150 g/tonne of feed is recommended to improve the productive performance of laying hens.

REFERENCES

- Arrieta Acevedo, J.M. and K. Valle Valenzuela, 2008. Performance response in laying hens fed a corn-soy diet reformulated with the Allzyme[®] SSF nutrient matrix. Alltech de Mexico, Mexico City. Proc. Alltech's 24th Annual Symp. on Biotechnol. in the Feed Industry, Lexington, KY., pp: 1.
- Avila, E. and B. Fuente, 2006. Effect of Allzyme[®] SSF in sorghum-soybean diets on the performance of second cycle Hy-Line W36 laying hens. Facultad Medicina Veterinaria y Zootecnia, Universidad Nacional Autonoma de Mexico. Proc. Alltech's 22nd Annual Symp. on Biotechnol. in the Feed Industry, Lexington, KY., pp: 1.
- Bangkok Animal Research Centre, (BARC) Bangkok, Thailand. Undated. Effect of SSF supplementation in layer diets on egg production, quality and economic parameters. Alltech, Inc. commissioned trial. Powerpoint slide set, pp: 10.
- Cheng, J., M. Qiugang, C. Xudong and W. Zhisheng, 2004. Effect of Allzyme[®] SSF on the performance and nutrient digestibility of layers fed a low energy and low phosphorus corn-soya diet. College of Anim. Sci. and Technol., China Agricultural University, China, pp: 3.
- Collazos, H., J. Granados and D. Piernagorda, Undated. Phytase supplementation in cereals by-products based diets and effects on production, eggshell quality, calcium and phosphorus in laying hens. Universidad Nacional Y A Distancia UNAD, Facultad de Ciencias Agrarias, Departamento de Zootecnia, Bogota DC., Cundinamarca, Colombia, pp: 4.

- Dallman, P.R., J.K. Nunes, L.B. Amaral, V. Luchexe, A.D.A. Gabana, P.L.S. da Silva, N.H.F. Zauk, C.L.G. Ribeiro, M.H.D. Silveira, J.L. Rech, F.M. Goncalves, M.A. Anciuti and F. Rutz, 2006a. Reformulating meat and bone meal-based diets fed brown layers based on changes in metabolizable energy availability due to Allzyme[®] SSF. Departamento de Zootecnia, FAEM, Universidade Federal de Pelotas, RS, Brazil. Proc. Alltech's 22nd Annual Symp. on Biotechnol. in the Feed Industry, Lexington, KY., pp: 1.
- Dallmann, P.R., J.K. Nunes, L.B. Amaral, V. Lucheze, A.D.A. Gabana, P.L.S. da Silva, N.H.F. Zauk, L.G. Carmen Ribeiro, M.H.D. Silveira, J.L. Rech, V.F. Roll and F. Rutz, 2006b. Reformulating corn/soy diets fed brown layers based on changes in metabolizable energy availability due to Allzyme[®] SSF. Proc. Alltech's 22nd Annual Symp. on Biotechnol. in the Feed Industry, Lexington, KY., pp: 1.
- Devegowda, G., K.R. Ramesh and Venkatesh, 2008. Corn-with-cob based diets fed with and without Allzyme® SSF: Performance response of laying hens. University of Agricultural Sciences and Karnataka Veterinary, Animal and Fisheries Sciences University, Bangalore, India. Proc. Alltech's 24th Annual Symp. on Biotechnol. in the Feed Industry, Lexington, KY, pp: 1.
- Gentilini, F.P., R.A.G. Silva, P.M. Nunes, A. Kunde, M.A. Anciuti and F. Rutz, 2007. Grupo de Estudos em Aves e Suinos, Anim. Sci. Dept., FAEM, Conjunto Agrotecnio Viconde do Graca and Universidade Federal de Pelotas, RS, Brazil. Proc. Alltech's 23rd Annual Symp. on Biotechnol. in the Feed Industry, Lexington, KY., pp: 1.
- Kaminska, B., B. Skraba and J. Koreleski, 1995. Effect of phosphorus level and SSF supplementation on performance of laying hens and egg shell quality. Department of Feed Sci. and Anim. Products and Department of Nutrition, Institute of Anim. Production, Krakow, Poland. Proc. Alltech's 11th Annual Symp. on Biotechnol. in the Feed Industry, Lexington, KY., pp: 1.
- Nunes, J.K., P. Rossi, A.L. Rocha, D. Bourscheidt, V.L. Santos, P. Anders, T. Mabilia, M.A. Anciuti, J.C. Maier and F. Rutz, 2007a. Effects of Allzyme SSF in layer diets containing meat meal on layer performance and egg quality. Group de Estudos em Aves e Suinos, Anim. Sci. Dept, FAEM, Conjunto Agrotecnio Visconde da Graca and Universidade Federal de Pelotas, RS, Brazil. Proc. 23rd Annual Symp. on Biotechnol. in the Feed Industry, Lexington, KY., pp: 1.

- Nunes, J.K., P. Rossi, L. André, R. Ribeiro, C. Haetinger, P. Anders, V.L. Santos, M.A. Anciuti, A. Marcos, J.C. Maier and F. Rutz, 2007b. Performance and egg quality of brown layers fed diets containing Allzyme[®] SSF. Federal University of Paraná State, Grupo de Estudos em Aves e Suinos, Anim. Sci. Dept., FAEM, Pelotas, RS, Brazil; Conjunto Agrotécnico Visconde a Graca, Pelotas, RS, Brazil; Univesidade Federal de Pelotas, RS, Brazil. Proc. Alltech's 23rd Annual Symp. on Biotechnol. in the Feed Industry, Lexington, KY., pp: 1.
- Quigang, M., J. Cheng, Y. Jiuxian, Guobaohai and S. Chunling, 2004. Effect of Allzyme[®] SSF on reproductive performance and phosphorus availability in laying breeder hens. College of Anim. Sci. and Technol., China Agricultural University, China, pp: 3.
- Rossi, P., J.K. Nunes, P.V. Moraes, M.A. Anciuti and F. Rutz, 2007. Effects of Allzyme[®] SSF on the performance and egg quality of layers. Grupo de Estudos em Aves e Suinos, FAEM, Pelotas, RS, Brazil. Proc. Alltech's 23rd Annual Symp. on Biotechnol. in the Feed Industry, Lexington, KY., pp: 1.

- Rossi, P., A.A. Rocha, J.S. Reis, J.K. Nunes, J.L. Rech, P.O. Dallmann, M.H.H.D. Silveira, M.A. Anciuti and F. Rutz, 2006. Interaction between Allzyme[®] SSF and body weight on the performance and egg quality of layers. Departamento de Zootecnia, Universidade Federal de Pelotas, RS, Brazil. Proc. Alltech's 22nd Annual Symp. on Biotechnol. in the Feed Industry, Lexington, KY., pp: 1.
- Rutz, F., Undated. SSF in layers: released energy estimates using SSF. Departamento Zootecnia, Universidad Federal de Pelotas, Brazil. (Powerpoint slide set, Alltech, Inc., Nicholasville, KY.,) pp. 3.
- Sundu, B., A. Kumar and J. Dingle, 2004. The effect of levels of copra meal and enzymes on bird performance. Proc. 16th Annual Australian Poult. Sci. Symp., Sydney, New South Wales, Australia, Feb. 9-11
- Wu, Y.B., J. Pierce, W.H. Hendricks and V. Ravindran, 2003. Comparison of *in vitro* nutrient release by three enzyme preparations in wheat- and maizebased diets. Proc. Aust. Poult. Sci. Symp., 15: 114-118.